

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.





            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  
Choosing a DDS Vendor {#choosing-a-dds-vendor}

@tableofcontents

Choosing a DDS vendor is usually as simple as changing the RMW_IMPLEMENTATION environment variable. It can be set after building Autoware, as long as the respective rmw_* packages are installed before building, because the software is built for all the available typesupports installed. The rmw layer loads a given rmw_* implementation at runtime via the RMW_IMPLEMENTATION variable, unless there’s only one, in which case it shortcuts to the installed RMW implementation. The change can also be made more permanent by changing it in the ADE_DOCKER_RUN_ARGS in the .aderc file.

For more information about why one would want to use a different DDS vendor and which ones are available, see [this ROS Index article](https://index.ros.org/doc/ros2/Concepts/About-Different-Middleware-Vendors/).
For more information about working with multiple middleware (DDS) implementations, see [this ROS Index article](https://index.ros.org/doc/ros2/Tutorials/Working-with-multiple-RMW-implementations/).

The supported versions of each DDS implementation for a particular version of ROS are detailed in [REP-2000](https://ros.org/reps/rep-2000.html).

# Eclipse Cyclone DDS
[Eclipse Cyclone DDS](https://projects.eclipse.org/projects/iot.cyclonedds) is the default DDS in ADE and required for integration with the @ref lgsvl :
`
ade$ export RMW_IMPLEMENTATION=rmw_cyclonedds_cpp
`

# FastDDS
[FastDDS](https://www.eprosima.com/index.php/products-all/eprosima-fast-dds), formerly known as FastRTPS, is the default in ROS Dashing:
`
ade$ export RMW_IMPLEMENTATION=rmw_fastrtps_cpp
`

# RTI Connext DDS
[RTI Connext DDS](pthttps://www.rti.com/products) is not installed in ADE by default, so one more step is needed:
`
ade$ sudo apt update
ade$ sudo apt-get install rti-connext-dds-5.3.1 ros-${ROS_DISTRO}-rmw-connext-cpp
ade$ export RMW_IMPLEMENTATION=rmw_connext_cpp
`

# GurumDDS
GurumDDS is not installed in ADE by default, so one more step is needed:
`
ade$ sudo apt update
ade$ sudo apt-get install gurumdds-2.6 ros-${ROS_DISTRO}-rmw-gurumdds-cpp
ade$ export RMW_IMPLEMENTATION=rmw_gurumdds_cpp
`





            

          

      

      

    

  

    
      
          
            
  
Building {#building}

@tableofcontents

# Prerequisites
You need to be inside an ADE container, or have installed the dependencies manually. See @ref installation.

If you haven’t done so already, get the source code with

`{bash}
$ cd AutowareAuto
$ vcs import < autoware.auto.$ROS_DISTRO.repos
`

Optionally, you can choose a DDS implementation other than the default Cyclone DDS: @subpage choosing-a-dds-vendor

# How to build the code {#installation-and-development-how-to-build}
To build all packages in Autoware.Auto, navigate into the AutowareAuto directory and run

`{bash}
ade$ colcon build
`

It’s important that you always run colcon build from the repository root. If everything went well, you should _not_ see “failed” on your screen, although “packages had stderr output” is okay.

By default, this produces a maximally optimized build in order to run the stack as efficiently as possible. For debugging symbols and/or reduced compile times, you can add –cmake-args -DCMAKE_BUILD_TYPE=”Debug” to the command line.

To verify that everything works as expected, see if all tests pass:

`{bash}
ade$ colcon test
ade$ colcon test-result --verbose
`
The first command will run the tests attached to the packages in your workspace.
The second command gives you detailed output from the tests on which ones passed and which failed.

## Advanced options
ROS 2 uses the colcon build system. For more information and details about options and flags, take a look at
`{bash}
colcon build --help
`
and see [the colcon documentation](https://colcon.readthedocs.io/en/released/user/quick-start.html). In the following, a few of the most useful options are listed.
Note that colcon options are spelled with an underscore instead of a dash – this is a common cause of typos.

### Selecting packages to build
To just build a single package:

`{bash}
colcon build --packages-select <package_name>
`

Note that this does not automatically also build or rebuild its dependencies recursively. To do that:

`{bash}
colcon build --packages-up-to <package_name>
`

These options are also accepted by colcon test.

To add a compiler flag to all packages, e.g. for enabling the undefined behavior sanitizer:
`{bash}
colcon build --cmake-args -DCMAKE_CXX_FLAGS="-fsanitize=undefined"
`

### Cleaning the build output
colcon isn’t very good at being stateless, so when you build, make changes, and build again, you can sometimes end up with a different result than when you build from scratch. To make sure you’re getting a fresh build of a package, just do

`{bash}
rm -rf {build,install}/my_package
`

to remove all build artifacts associated with that package. Alternatively, if you don’t want to delete the old binaries, you can specify custom build and install directories:

`{bash}
colcon build --build-base build_mybranch --install-base install_mybranch
`

### Seeing compiler commands
To see the compiler and linker invocations for a package, use
`{bash}
VERBOSE=1 colcon build --packages-up-to <package_name> --event-handlers console_direct+
`

## Starting from a clean slate

Most issues with building Autoware.Auto are caused by out-of-date software or old build files.
To update ade and the Docker containers it manages as well as clear old builds, run the following in your adehome/AutowareAuto folder:

`{bash}
$ ade stop
$ sudo ade update-cli
$ ade start --update --enter
ade$ cd AutowareAuto
ade$ rm -rf build/ install/ log/ src/external/
ade$ git pull
ade$ vcs import < autoware.auto.$ROS_DISTRO.repos
`

If you are using Autoware.Auto outside of ade, try updating your system and running the following in your AutowareAuto folder and re-building (where $ROS_DISTRO is the current distro, e.g. foxy):

`{bash}
$ rm -rf build/ install/ log/ src/external/
$ git pull
$ source /opt/ros/$ROS_DISTRO/setup.bash
$ vcs import < autoware.auto.$ROS_DISTRO.repos
`

If you are still having trouble after these commands have been run, please see the @ref support-guidelines for where to ask questions.





            

          

      

      

    

  

    
      
          
            
  
Guidelines and Best Practices {#contributor-guidelines}

@tableofcontents

# Contribution Workflow


	[Create an issue](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/new?issue%5Bassignee_id%5D=&issue%5Bmilestone_id%5D=) defining your intended contribution






	Use one of the provided templates [by selecting one from the drop-down list](https://docs.gitlab.com/ee/user/project/description_templates.html#using-the-templates).


	Select yourself in the Assignee field.


	If you have permissions to do so, assign to an appropriate milestone. If you do not have permissions, [mention](https://about.gitlab.com/blog/2016/03/08/gitlab-tutorial-its-all-connected/#mention-others-and-assign) a [maintainer](https://gitlab.com/groups/autowarefoundation/autoware.auto/committers/-/group_members) in the issue for milestone assignment.


	The issue template you choose will assign one appropriate label for the issue type (bug, discussion, feature, or improvement).
Assign any additional labels from the available list that you feel are appropriate for the issue’s status or other attributes.








	Create a fork






	For more information about the fork-and-pull model, see the [Develop in a Fork](@ref develop-in-a-fork) page.








	Write code


	Create a merge request






	For more information about the fork-and-pull model, see the [Develop in a Fork](@ref develop-in-a-fork) page.








	Finish a merge request






	In order for a merge request to be merged to Autoware.Auto, it must meet the following criteria:






	All discussions on the merge request must be resolved.


	All items of the merge-request checklist are checked off.


	It must be approved by at least one maintainer.


	CI jobs for the merge request must have passed successfully.








	If you have permissions, the “Merge” button will show up automatically on your merge request once the above criteria are met.
If you do not have permissions and the above criteria are met, assign the merge request to a [maintainer](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/project_members).


	If another merge request is merged before yours, your merge request is out of date and needs to be rebased and CI needs to run again.







# Guidelines for General Code Development

Only C++14 and below is allowed for functional code.
Python 3.7+ and Bash are allowed for tooling.
CMake is the preferred build system, it should integrate with Colcon.
Deviations need to be approved by the maintainers.

The requirements for C++14 and Python 3.7+ align with compiler and tooling support found in ROS Foxy.
This may change in the future as new OS or ROS environments are targeted; see @ref target-environments for details.

## Building
See @ref building.

## Committing

Developers should commit and push regularly to GitLab to avoid data loss. Commit messages should follow
common standards as laid out in this [post](https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html). In
summary,

1. Write your commit message in the imperative
1. In the mandatory first line, summarize what the functional change is, not why it is introduced
1. Optionally add more details separated by a blank line

As a general recommendation, add a reference to the issue in the commit message so it is easier for others in the future
to get more context about the changes in the commit. If the commit doesn’t refer to a particular issue but only touches
a particular package or aspect, add a reference to that.

Example summary line referring to issue #716:


[716] Expand contributor guidelines




Example summary line without an issue:


[CI] Disable flaky tests in foo and bar packages




There is assistance via git hooks to help with commit messages. Navigate to .git/hooks in the checkout of
Autoware.Auto, then:


ln -s ../../.git-hooks/prepare-commit-msg  # prepend issue number
ln -s ../../.git-hooks/commit-msg          # check formatting of commit message




## Cross-platform Compatibility

It is preferred to use cross-platform solutions for system-level function calls whenever possible. While the C++
standard library should be used for as many tasks as possible, some functions (such as std::filesystem) are not
available in C++14 in cross-platform implementations. This usually means utilizing libraries like
[asio](https://think-async.com/Asio/index.html) for networking tasks and [a std::filesystem
shim](https://github.com/gulrak/filesystem) for filesystem navigation is preferred to creating platform-specific
implementations.

## Documentation

To check that the code is properly documented and all documents are correctly linked, you can run AutowareAuto/docs/.doxygen/build.py.
The generated documentation can be found in AutowareAuto/docs/_build/html/index.html.
For more details see the [documentation guide](@ref writing-documentation).

## Formatting {#contributors-guidelines-formatting}

Autoware.Auto follows ROS recommendations for code style and formatting. See the [Coding Style and Language Versions
entry for C++](https://index.ros.org/doc/ros2/Contributing/Code-Style-Language-Versions/#id3) or the [Coding Style and
Language Versions entry for Python](https://index.ros.org/doc/ros2/Contributing/Code-Style-Language-Versions/#python)
for more information. We enforce these guidelines using linters provided with ament as far as possible. All
packages should have the following in their package.xml files:

`xml
<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>
`

In addition, the following should be in the package’s CMakeLists.txt (extended with other tests):

```cmake
if(BUILD_TESTING)


find_package(ament_lint_auto REQUIRED)
ament_lint_auto_find_test_dependencies()




endif()
```

In CI, merge requests fail if they introduce improperly formatted code. To avoid that, format the
C++ code locally with


ament_uncrustify –reformat file.cpp         # update single file in place
ament_uncrustify –reformat path/to/pkg_foo  # update all C++ source files in package




With the above CMake setup, run all linters together with all other tests of a package as described in the [Running
Tests](#contributors-guidelines-run-tests) section or run a specific linter; e.g.,


ament_cpplint path/to/pkg_foo




Tools such as CLion can parse the output of the previous command and provide fast navigation to
offending lines in the code.

To lint the code automatically before each commit, activate the pre-commit
[hook](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/blob/master/.git-hooks/pre-commit). From the
repository base directory, do:


cd .git/hooks
ln -s ../../.git-hooks/pre-commit




## Code Coverage {#contributors-guidelines-coverage}

For [code coverage](https://en.wikipedia.org/wiki/Code_coverage), we use the popular [GNU tool
lcov](http://ltp.sourceforge.net/coverage/lcov.php) for generating statistics about line coverage. For every merge
request, we run our test suite and report the percentage of lines covered. We aim for a 100% line coverage and
continuously improve our test suite to achieve that number. In particular, we do not accept changes that reduce the
coverage value. If a merge request has a lower line coverage than master, we will request the contributor to add more
tests.

The coverage report for the latest successful CI run on the master branch is available
[here](https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/coverage/index.html).

Check @ref how-to-write-tests-and-measure-coverage-coverage for details to create that report manually.

The articles on @ref how-to-write-tests-and-measure-coverage and @ref integration-testing have further details on writing tests.

## C++ Resources


	[cppreference.com](https://en.cppreference.com/w/)


	[C++ Core Guidelines](http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines)




# Guidelines for ROS Development

In general, Autoware.Auto follows the [ROS 2 Developer
Guide](https://index.ros.org/doc/ros2/Contributing/Developer-Guide/) for contributions, except where noted. Some special
items of note that are not described in the ROS 2 Developer Guide are listed below.

## Creating a New Package

Basic instructions for creating a new ROS 2 package can be found [in this
tutorial](https://index.ros.org//doc/ros2/Tutorials/Colcon-Tutorial/#create-your-own-package). In Autoware.Auto, much of
the boilerplate code can be automatically generated by utilizing the autoware_auto_create_pkg tool.

For more information on using the tool, see ref autoware_auto_create_pkg-package-design.

## 2-Tier Development Pattern

In all but the most trivial utilities, it is best to implement a code pattern with at least two tiers of abstraction
which would look something like:


	A “core,” pure C++ class which performs all basic algorithmic and utility functions which are not ROS-related.

This class may use ROS utilities such as logging or message structures, but such use must be justified in terms of
why it cannot be done via the class’s external interface (e.g. the enclosing node uses information obtained via the
class’s external interface to populate log messages).



	A “ROS Node” or “ROS Component” class which inherits from rclcpp::Node or a subclass, handles all ROS-specific
functions.

This class should instantiate the class defined in 1. and register the node as a
[component](#contributors-guidelines-components), so it can be created with launch files.





In the rare case that fine-grained control over execution is desired, create a main function in a separate file with a
[ROS Executor](http://docs.ros2.org/foxy/api/rclcpp/classrclcpp_1_1Executor.html#details) to control provision of
execution time of the node in some way (e.g. through calling spin()).

This design pattern helps to promote separation of concerns and code re-use. The core and the ROS node(s) can be
implemented in separate packages; e.g. foo and foo_nodes. There are some trivial cases where a simple ROS Node that
does not require a “core” are acceptable but these should be the exception, not the rule.

## Naming in Autoware.Auto

The [Naming Guidelines](@ref autoware-common-naming-guidelines) provide for standard, reliable naming and namespacing
conventions which should be used in all Autoware.Auto packages.

## On Topics and Parameters

In most cases, topics should receive a default name in code and be remapped if needed. Providing topic names as ROS
parameters is an anti-pattern, with few exceptions.

Required parameters should not have default values but fail during construction if no value is provided.

### Parameter File Syntax

To avoid the need to change parameter files based on the namespacing or node name of a node, use the “double-star”
syntax. e.g.:

```yaml
/**:



	ros__parameters:
	param1: value








```

The above parameter file can be passed to any node regardless of namespace or name and the parameters will populate
those of the node if the declared parameters match those in the file.

## ROS Components {#contributors-guidelines-components}

As of ROS Dashing, the recommended way to write Nodes in ROS 2 is using Components.
For more information about components and their use, see [the ROS Composition Guide](https://index.ros.org/doc/ros2/Tutorials/Composition/).
To implement your node as a Component, it must conform to the items below (using ListenerNode as an example):


	Must inherit from rclcpp::Node or a subclass (such as rclcpp::LifecycleNode)


	Must use a single-argument constructor in the form of:




```{cpp}
namespace composition_example
{
class ListenerNode: public rclcpp::Node {


ListenerNode(const rclcpp::NodeOptions & options)
: Node(“listener”, options)
{


…




}




}
}  // namespace composition_example
```


	Must contain a registration macro and header in a single translation unit. For example, the following at the bottom of your cpp file would suffice:




`{cpp}
// Insert at bottom of translation unit, e.g. listener_node.cpp
#include <rclcpp_components/register_node_macro.hpp>
// Use fully-qualified name in registration
RCLCPP_COMPONENTS_REGISTER_NODE(composition_example::ListenerNode)
`


	Must compile the components as a shared library and register them in your CMakeLists.txt file.


	Must depend on the rclcpp_components package.




### Minimal CMake Example {#contributors-guidelines-minimal-cmake-example}

The following is a minimal CMakeLists.txt file which uses the recommended ament_cmake_auto macros, registers a
single component, builds a stand-alone node which uses the component, and exports it as a dependency for downstream
packages. It can be conveniently created by
[autoware_auto_create_pkg](https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/autoware_auto_create_pkg-package-design.html):

```{cmake}
cmake_minimum_required(VERSION 3.5)
project(composition_example)

# Default to C++14
if(NOT CMAKE_CXX_STANDARD)


set(CMAKE_CXX_STANDARD 14)




endif()


	if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES “Clang”)
	add_compile_options(-Wall -Wextra -Wpedantic)





endif()

find_package(ament_cmake_auto REQUIRED)
ament_auto_find_build_dependencies()

ament_auto_add_library(listener_node SHARED src/listener_node.cpp)
autoware_set_compile_options(listener_node)
rclcpp_components_register_nodes(listener_node “composition_example::ListenerNode”)

ament_auto_add_executable(listener_node_exe src/listener_main.cpp)
autoware_set_compile_options(listener_node_exe)


	if(BUILD_TESTING)
	find_package(ament_lint_auto REQUIRED)
ament_lint_auto_find_test_dependencies()





endif()

ament_auto_package()
```

### Minimal Package.xml Example {#contributors-guidelines-minimal-package-xml-example}

The following is a minimal package.xml file to go with the above CMakeLists.txt example:

```{xml}
<?xml version=”1.0”?>
<?xml-model href=”http://download.ros.org/schema/package_format3.xsd” schematypens=”http://www.w3.org/2001/XMLSchema”?>
<package format=”3”>


<name>composition_example</name>
<version>0.0.1</version>
<description>Example of node composition</description>
<maintainer email=”my.email@example.com”>The Autoware Foundation</maintainer>
<license>Apache License 2.0</license>

<buildtool_depend>ament_cmake_auto</buildtool_depend>
<buildtool_depend>autoware_auto_cmake</buildtool_depend>

<depend>rclcpp</depend>
<depend>rclcpp_components</depend>

<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>


	<export>
	<build_type>ament_cmake</build_type>





</export>




</package>
```

## Resources


	[rclcpp_components in Dashing Diademata Release Notes](https://index.ros.org/doc/ros2/Releases/Release-Dashing-Diademata/#rclcpp-components)








            

          

      

      

    

  

    
      
          
            
  
How to Handle Errors at the Node Level {#error-handling}

@tableofcontents

# Goals {#error-handling-1}

This article describes how developers should handle errors in their nodes in Autoware.Auto.

# Introduction {#how-to-handle-errors-introduction}

Autoware.Auto currently uses basic error reporting through the ROS 2 logging mechanisms.

If you are not yet familiar with the concept of logging in ROS 2, see the [ROS 2 logging page](https://index.ros.org/doc/ros2/Concepts/Logging/) for some examples and demos.

# Logging guidelines {#how-to-handle-errors-logging}

## Best practices {#how-to-handle-errors-best-practices}

Follow these best practices to ensure that your log messages are easily comprehensible.


	Put enough runtime context in the log message (including values of crucial variables) to help diagnose the issue (WARN and higher levels).


	When writing an ERROR or FATAL log message remember to also handle the situation programmatically.
Return a meaningful value, throw an exception and handle it somewhere (if exceptions are allowed in your component), or transition to an erroneous state in the node’s life cycle.
Think about the system as a whole and what effects the situation might have beyond your node, and design the best way to adapt, exit, or repair and recover.


	When logging in the loop (meaning high frequency spin loops or callbacks of ROS nodes), use RCLCPP_[SEVERITY]_THROTTLE to control how often the message is logged (replace [SEVERITY] with DEBUG, INFO etc).
This can be useful in a situation like logging the ego position not with the frequency of the updates, but in a more human-friendly way (e.g. only each second).
If the log would be repetitive (e.g. the same WARN message with each pass), use the RCLCPP_[SEVERITY]_ONCE macro.


	Use logging output for automated testing, checking both the normal and erroneous execution.
Log values that you can check to determine whether the behavior is as expected (e.g. results of node computations).


	Before submitting a merge request, check whether your new or changed log messages are following the guidelines.
Eliminate unnecessary log messages used when developing a new feature.




# Log severity levels guide {#how-to-handle-errors-severity}


	FATAL – use this log level when a failure occurs that requires termination of the entire application.
FATAL errors should only occur in non-optional components and are to be used sparingly.
Example: a driver for a crucial piece of hardware fails to initiate or access the device.
Note that it is sometimes difficult for a component programmer to determine how component failures affect the entire application – changes in log severity can be made after a review.


	ERROR – signals a serious issue with a component, either preventing it from working altogether and thus removing a part of functionality from the system or disabling some core functionality.
Unlike FATAL, ERROR logs do not necessarily signal that the entire system went down abnormally.
Examples: unable to record actuator/sensor data, unable to transform one of a sensor’s frames.


	WARN – signals something unusual or a problem which does not cause significant harm.
It might also inform that a bigger problem is likely to occur in the future, e.g. a resource is running out.
Warnings can also signal unusual delays, drop in quality or temporary lack of published data to which the component is subscribing.
Warnings can escalate into errors, e.g. if delays become unacceptable.
WARN is different from INFO in that it should be investigated.
WARN logs should cover all such situations but show rarely at runtime in a well-developed application.


	INFO – informs that some notable (and expected) event occurred, such as a node transition to a distinct state, successful initiation of a component, or important service calls.
Try to limit the amount of logging on this level and keep it concise and packed with useful information.


	DEBUG – is to be used for a more detailed information that can assist in debugging.
The log output at the DEBUG level is expected to be quite comprehensive.
It helps to find issues by improving visibility of the program flow.
The output of DEBUG and INFO log levels should also be covered with automated testing.
DEBUG level log messages can be used in loops, although developers should consider in each case whether it improves or degrades readability of the log. _ONCE and _THROTTLE variants of logging macros can be used to control the volume.




## C++ logging macros {#how-to-handle-errors-logging-macros}

Replace [SEVERITY] with DEBUG, INFO etc.


	RCLCCP_[SEVERITY] - default macro to use for logging with the use of format string (also accepts a single std::string argument).


	RCLCPP_[SEVERITY]_ONCE – use when you only want the log to be called once.
Subsequent calls are ignored.
This can be useful for warnings, when you expect to encounter the same situation with each pass.


	RCLCPP_[SEVERITY]_EXPRESSION – log a message when a condition is satisfied (convenient to skip the if clause).
Note that it is still necessary to use the explicit if in case you want to do more than log on the condition.


	RCLCPP_[SEVERITY]_FUNCTION – log message only when a function returns false (useful with  “isOk()” type of function).




### New macros in Eloquent


	RCLCPP_[SEVERITY]_STREAM - default macro to use for using stream (<<) way of constructing the log.
This is usually more convenient than using a format string. All other macros have stream variants since Eloquent (_STREAM_EXPRESSION, _STREAM_ONCE, _STREAM_FUNCTION).


	RCLCPP_[SEVERITY]_THROTTLE - log messages, but only as often as indicated.
Useful for logging in high frequency loops and callbacks, when you care about how the value changes with time, but only need a less frequent update.




## Logging and automated testing {#how-to-handle-errors-automated-testing}

Use launch testing as described in [this article](https://github.com/ros2/launch/tree/master/launch_testing#launch_testing) to check whether the node outputs log messages as expected.
You can even extract values from logs and check them against constraints.

The presence of FATAL or ERROR logs should fail a normal test.
Presence of FATAL or ERROR logs that are different than expected should fail error handling tests.
Whether the presence of WARN logs should also fail the test can be determined during code review of a merge request.





            

          

      

      

    

  

    
      
          
            
  
How to Develop in a Fork {#develop-in-a-fork}

@tableofcontents

# Using fork-and-pull {#fork-and-pull}

Autoware.Auto follows the fork-and-pull model of Git use.
This means that developers should make a fork of the Autoware.Auto repository, develop in branches on that fork, and then make merge requests (the GitLab term; pull requests in GitHub terminology) from that fork to the central Autoware.Auto repository.

The basic flow consists of the following steps.


	If one does not exist already, create an issue in the Autoware.Auto repository to track goals and progress.
See the [GitLab documentation](https://docs.gitlab.com/ee/user/project/issues/) for more information on how to create an issue.


	Make a fork of the Autoware.Auto repository.
The Autoware.Auto repository is known as the upstream repository relative to your fork.
You will need a GitLab account for this, but a free account is sufficient.
This fork will initially be stored on the GitLab servers only.

To make a fork, click the “fork” button in the top-right corner of the Autoware.Auto “Project overview” screen.

@image html images/autowareauto_fork_button_location.png “Location of the fork button” width=1000px



	Clone your fork locally to create a local copy.


$ git clone git@gitlab.com:[your_username_here]/AutowareAuto.git




You can find the URL for cloning your fork by clicking the “Clone” button in the “Project overview” screen or “Repository - Files” screen of your fork.

@image html images/autowareauto_clone_button_location.png “Location of the Clone button” width=1000px



	In your local copy, create a new branch to do your work in.
Give the branch a descriptive name.
GitLab uses the pattern [issuenumber]-[issue-name-with-hyphens].
For example, if you are doing work for issue #42, “Calculate the answer to the ultimate question”, you could name your branch like so:


$ git checkout -b 42-calculate-the-answer-to-the-ultimate-question




This will create a new branch and put your local working copy into it.
It is important to note that this new branch is still only stored on your computer.
Before you can create a merge request, it must be pushed to the copy of your fork on the GitLab server.



	Do your work in your local copy, in the new branch.
Be sure to pay attention to [the contribution guide](https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/cpp-development-process.html) for how to write your code, etc.


	[Commit your changes](https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository) to the branch in your local copy.


	Now that you have changes in your local copy, it is time to get them to the server, from where you can create a merge request.
From this point is where you need to be careful about where you run commands to ensure you do not accidentally pollute your history.
If your history is not clean and up-to-date, your merge request will not be able to be merged.

Begin by adding the upstream repository location to your local repository’s settings as a remote repository.
You only need to do this the first time.


$ git remote add upstream https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.git




Now that the upstream repository location is set, bring your branch up-to-date with the upstream repository’s master branch.


$ git checkout master
$ git fetch upstream
$ git merge upstream/master




The final command updates the master branch of your local copy to match the master branch of the Autoware.Auto repository.
It is very important to use the git merge command to do this.
Do not use the `git rebase` command to bring your local copy’s master branch up-to-date.
The reason for this is that [you should never rebase commits that are public](https://git-scm.com/book/en/v2/Git-Branching-Rebasing), and all the commits in the master branch are by their nature public.

If the final command above does not happen smoothly, then your local copy of the master branch, or possibly the copy of the master branch in your fork on the server, has become polluted with extra commits.
See the troubleshooting section at the end of this document for a solution.



	The master branch in your local copy now matches the master branch in the Autoware.Auto repository.
To ensure that your branch will apply cleanly to the master branch on the Autoware.Auto repository, which is a prerequisite for making a merge request, you need to bring the recent changes from the master branch into the branch containing your work.
This is done using the [git rebase command](https://git-scm.com/book/en/v2/Git-Branching-Rebasing).
You will be rebasing your changes onto the latest commit in the master branch.


$ git checkout 42-calculate-the-answer-to-the-ultimate-question
$ git rebase master






	Finally, push your changes to the copy of your fork on the GitLab server.

If this is the first time you are pushing this branch, you need to tell Git where the branch on your fork (not the Autoware.Auto repository) is.


$ git push –set-upstream origin 42-calculate-the-answer-to-the-ultimate-question




If you have pushed this branch before, then you do not need to set the destination branch, but you do need to do a force-push.


$ git push -f




You now have a copy of your branch with your proposed changes in your fork on the GitLab servers.
If you are ready for this work to be merged into the Autoware.Auto repository’s master branch, you must now create a merge request.



	Create a merge request to merge your changes into the primary fork.

When you perform the git push command, above, for the first time, the result from the GitLab server will contain a URL that you can use to create a merge request from your branch.

@image html images/autoware-merge-request.png “URL to create a merge request directly” width=1000px

Alternatively, you can create a merge request through the GitLab website. On the Autoware.Auto project page, and on the page for your fork, there will be a button to create a merge request.

@image html images/autoware-merge-request-project.png “Button to create a merge request” width=1000px

If your merge request closes the issue you created in the first step above, its description should contain the words “Closes #<issue_number>”.
See the [Gitlab documentation](https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically) for more details.


	[If your merge request isn’t quite ready for review](https://docs.gitlab.com/ee/user/project/merge_requests/work_in_progress_merge_requests.html):
	
	Add “WIP: ” to the beginning of your merge request’s title and it will automatically be marked as Work in Progress.


	Remove “WIP: ” when your merge request is ready for review. See the next step for how to let a maintainer know that it is ready.


	WIP merge requests can not be merged.






	When your merge request is ready for review:
	
	Assign it to a [maintainer](https://gitlab.com/groups/autowarefoundation/autoware.auto/committers/-/group_members) and [add the “review” label](https://docs.gitlab.com/ee/user/project/labels.html#assign-and-unassign-labels).


	If you do not have permissions to change milestones or labels on your merge request or are not sure who should review your request, [mention](https://about.gitlab.com/blog/2016/03/08/gitlab-tutorial-its-all-connected/#mention-others-and-assign) a [maintainer](https://gitlab.com/groups/autowarefoundation/autoware.auto/committers/-/group_members) in the comments for assignment.












During the review process, you may need to make additional changes in response to comments from reviewers, so you must watch your merge request and respond to comments as soon as possible.
When you push your changes, the merge request will be updated automatically and the Continuous Integration system will also be run.
If this detects any problems (such as compilation or test failures), you must also fix these.

When you need to add additional changes to the branch (for example, in response to a comment during code review), you will need to repeat the git push -f step above.
If there have been other merge requests merged into the master branch since you last pushed, you will also need to repeat the merging into master and rebasing steps.
When it is required and can be done automatically by GitLab, a “Rebase” button will be available on your merge request.
Click the button to perform the rebase and start the CI jobs again.
When it cannot be performed automatically due to conflicts between your proposed changes and the source code in the master branch, you will need to fix these conflicts in your fork before the merge request can be accepted.

# Working with changes from other merge requests {#using-unmerged-mrs}

There are times when you are working on something in your branch, and you find that you need to include some work that is not yet merged but is available in a separate merge request.
It is possible to temporarily include this work in your own branch while you develop, without polluting the history of changes that eventually make up your merge request.

Note that doing this places the following restrictions on your own merge request.


	Your merge request cannot be reviewed until the other merge request(s) you depend on has been merged into master on the Autoware.Auto repository first.
You should [mark the issue that gave rise to your merge request as blocked by the relevant other issues](https://docs.gitlab.com/ee/user/project/issues/related_issues.html).


	You must rebase and ensure a clean history, containing only your changes, prior to making a merge request.
If you follow the instructions here to rebase your branch before making a merge request then this should not be a problem.

To include the changes from another merge request in your own branch, prior to them being merged into the master branch, you need to get that branch into your local copy and merge it into your branch.



	In your local copy, fetch the latest from the upstream repository.


$ git fetch






	Change to your branch and merge in the changes from the branch for the merge request you wish to use.


$ git checkout 42-calculate-the-answer-to-the-ultimate-question
$ git merge upstream/41-calculate-the-ultimate-question






	Follow the [above steps](#fork-and-pull) for how to rebase your branch when the branch you depend on has been merged and your branch is ready to be merged into master.




# When to do multiple merge requests

Sometimes while developing a new feature, you may find a bug that needs fixing.
There may be cases of this where you cannot continue development of your feature until the bug is fixed.

In this situation, the correct thing to do is to first file a bug report, then create a new merge request containing the fix.
However, the source of that merge request should not be your branch for your new feature.
You should create a new, separate branch for the bug fix and follow the standard process to create a merge request and get the bug fix merged into the master branch on the Autoware.Auto repository.

To use the bug fix in the branch for your new feature prior to it being merged into master, you can follow the above steps for [working with changes from other merge requests](#using-unmerged-mrs).

# What to do when updating master doesn’t work

If the command to update your local copy of the master branch to the Autoware.Auto repository’s copy (the git merge upstream/master command) does not go smoothly, then your local copy of the master branch, or possibly the copy of the master branch in your fork on the server, has become polluted with extra commits.
You can fix this situation and bring your local copy back into line with the remote copy by moving the changes to a branch.

Create a new branch from master, then reset master to match the upstream.

`{bash}
$ git checkout -b my-branch-for-some-new-change
$ git checkout master
$ git reset --hard upstream/master
$ git push -f
`





            

          

      

      

    

  

    
      
          
            
  
Contributor’s guide {#contributors-guide}

This section of the Autoware.Auto documentation gives policies, procedures, best practices, and rules for contributing to Autoware.Auto.
You should begin with the contributor guidelines.


	@subpage contributor-guidelines


	@subpage develop-in-a-fork


	@subpage writing-documentation


	@subpage autoware-common-naming-guidelines


	@subpage integration-testing


	@subpage error-handling


	@subpage how-to-write-tests-and-measure-coverage




You can also find additional informative articles listed below.


	For a guide on how to port algorithms from Autoware.AI and ROS 1 to Autoware.Auto and ROS 2 with safety concerns in mind, see [this informative blog post by Apex.AI](https://www.apex.ai/post/porting-algorithms-from-ros-1-to-ros-2).


	These articles discuss how to build high-quality software in the open-source world:
- [Part 1](https://www.apex.ai/post/building-safe-algorithms-in-the-open-part-1-design)
- [Part 2](https://www.apex.ai/post/building-safe-algorithms-in-the-open-part-2-implementation)








            

          

      

      

    

  

    
      
          
            
  
How to Write Integration Tests {#integration-testing}

@tableofcontents

# Goals {#integration-tests-1}

This article motivates developers to adopt integration testing by explaining how to write, run,
and evaluate the results of integration tests.

# Quick reference {#integration-tests-refs}

1. [colcon](https://github.com/ros2/ros2/wiki/Colcon-Tutorial) is used to build and run test
3. [pytest](https://docs.pytest.org/en/latest/) is used to eventually execute the test,
generate jUnit format test result and evaluate the result
4. [unit testing](@ref how-to-write-tests-and-measure-coverage) describes testing big picture

# Introduction {#how-to-write-integration-tests-introduction}

This article motivates developers to adopt integration testing by explaining how to write, run,
and evaluate the results of integration tests.

## Quick reference {#integration-tests-quick-reference}


	[colcon](https://index.ros.org/doc/ros2/Colcon-Tutorial/) is used to build and run the tests


	integration_tests is used to specify tests in the CMakeLists.txt files




3. [pytest](https://docs.pytest.org/en/latest/) is used to eventually execute the test,
generate jUnit format test result, and evaluate the result

# Integration testing {#how-to-write-integration-tests-integration-testing}

An integration test is defined as the phase in software testing where individual software
modules are combined and tested as a group. Integration tests occur after unit tests, and before
validation tests.

The input to an integration test is a set of independent modules that have been unit tested. The set
of modules are tested against the defined integration test plan, and the output is a set of
properly integrated software modules that are ready for system testing.

# Value of integration testing {#how-to-write-integration-tests-value-of-integration-testing}

Integration tests determine if independently developed software modules work correctly
when the modules are connected to each other. In ROS 2, the software modules are called
nodes.

Integration tests help to find the following types of errors:


	Incompatible interaction between nodes, such as non-matching topics, different message types, or




incompatible QoS settings
- Reveal edge cases that were not touched with unit tests, such as a critical timing issue, network
communication delay, disk I/O failure, and many other problems that can occur in production
environments
- Using tools like stress and udpreplay, performance of nodes is tested with real data
or while the system is under high CPU/memory load, where situations such as malloc failures can be
detected

With ROS 2, it is possible to program complex autonomous driving applications with a large number
of nodes. Therefore, a lot of effort has been made to provide an integration test framework that
helps developers test the interaction of ROS2 nodes.

# Integration test framework architecture {#how-to-write-integration-tests-integration-test-framework-architecture}

A typical integration test has three components:


	A series of executables with arguments that work together and generate outputs


	A series of expected outputs that should match the output of the executables




3. A launcher that starts the tests, compares the outputs to the expected outputs,
and determines if the test passes

## A simple example {#how-to-write-integration-tests-a-simple-example}

The simple example consists of a talker node and a listener node. Code of the talker and
listener is found in the
[ROS 2 demos](https://github.com/ros2/demos/tree/master/demo_nodes_cpp/src/topics) repository.

The talker sends messages with an incrementing index which, ideally,
are consumed by the listener.

The integration test for the talker and listener consist of
the three aforementioned components:


	Executables: talker and listener




2. Expected outputs: two regular expressions that are expected to be found in the stdout of the
executables:



	Publishing: ‘Hello World: …’ for the talker


	I heard: [Hello World: …] for the listener







3. Launcher: a launching script in python that invokes executables and checks for the expected
output

note
Regular expressions (regex) are used to match the expected output pattern. More information about
regex can be found at the [RegExr](https://regexr.com/) page.

The launcher starts talker and listener in sequence and periodically checks the outputs. If the
regex patterns are found in the output, the launcher exits with a return code of 0 and marks the
test as successful. Otherwise, the integration test returns non-zero and is marked as a failure.

The sequence of executables can make a difference during integration testing. If exe_b depends on
resources created by exe_a, the launcher must start executables in the correct order.

Some nodes are designed to run indefinitely, so the launcher is able to terminate the
executables when all the output patterns are satisfied, or after a certain amount of time.
Otherwise, the executables have to use a runtime argument.

# Integration test framework {#how-to-write-integration-tests-integration-test-framework}

This section provides examples for how to use the integration_tests framework. The
architecture of integration_tests framework is shown in the diagram below.

![integration_test architecture](@ref process_of_apex_integration_tests.png)

## Integration test with a single executable {#how-to-write-integration-tests-integration-test-with-a-single-executable}

The simplest scenario is a single node. Create a package named my_cool_pkg in the ~/workspace
directory; it’s recommended to use the
[package creation tool](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/tree/master/src/tools/autoware_auto_create_pkg).

my_cool_pkg has an executable that prints Hello World to stdout. Follow the steps below to
add an integration test:


	Create a file ~/workspace/src/my_cool_pkg/test/expected_outputs/my_cool_pkg_exe.regex with the
content HellosWorld



	The string in the file is the regular expression to test against the stdout of the




executable






	Under the BUILD_TESTING code block, add a call to integration_tests to add the test
```cmake
set(MY_COOL_PKG_EXE “my_cool_pkg_exe”)
add_executable(${MY_COOL_PKG_EXE} ${MY_COOL_PKG_EXE_SRC} ${MY_COOL_PKG_EXE_HEADERS})
…
find_package(integration_tests REQUIRED)
integration_tests(


EXPECTED_OUTPUT_DIR “${CMAKE_SOURCE_DIR}/test/expected_outputs/”
COMMANDS
“${MY_COOL_PKG_EXE}”




```



	Build ~/workspace/, or just the my_cool_pkg package, using colcon:
`{bash}
$ ade enter
ade$ cd ~/workspace/
ade$ colcon build --merge-install --packages-select my_cool_pkg
`


	Run the integration test
```{bash}
$ ade enter
ade$ cd ~/workspace/
ade$ colcon test –merge-install –packages-select my_cool_pkg –ctest-args -R integration
…
Starting >>> my_cool_pkg
Finished <<< my_cool_pkg [4.79s]

Summary: 1 package finished [6.30s]

```





note
Use –ctest-args -R integration to run integration tests only.

colcon test parses the package tree, looks for the correct build directory, and runs the test
script. colcon test generates a jUnit format test result for the integration test.

By default colcon test gives a brief test report. More detailed information exists in
~/workspace/log/latest_test/my_cool_pkg, which is the directory that holds the directories
ctest, stdout, and stderr output. Note that these directory only contains output of ctest,
not the output of tested executables.

1. command.log contains all the test commands, including their working directory, executables,
arguments
2. stderr.log contains the standard error of ctest
3. stdout.log contains the standard output of ctest

The stdout of the tested executable is stored in the file
~/workspace/build/my_cool_pkg/test_results/my_cool_pkg/my_cool_pkg_exe_integration_test.xunit.xml
using jUnit format:

```xml
<?xml version=”1.0” encoding=”UTF-8”?>
<testsuite errors=”0” failures=”0” name=”pytest” skips=”0” tests=”1” time=”3.121”>



	<testcase classname=”my_cool_pkg.build.my_cool_pkg.my_cool_pkg_exe_integration_test_Debug”
	file=”~/workspace/build/my_cool_pkg/my_cool_pkg_exe_integration_test_Debug.py”
line=”36” name=”test_executable” time=”3.051783800125122”>
<system-out>(test_executable_0) pid 21242:


[‘~/workspace/build/my_cool_pkg/my_cool_pkg_exe’] (all >; console, InMemoryHandler: test_executable_0)
[test_executable_0] Hello World
[test_executable_0] signal_handler(2)
(test_executable_0) rc 27
() tear down




</system-out>





</testcase>




</testsuite>
```

test_executable_i corresponds to the (i+1)th executable. In this case, only one executable
is tested so i starts from 0. Note that test_executable_0 prints
Hello World to stdout, which is captured by the launcher. The output matches the regex
HellosWorld specified in the expected output file. The launcher then broadcasts a
SIGINT to all the test executables and marks the test as successful. Otherwise, the
integration test fails.

note
SIGINT is broadcast only if the output of the last executable matches its regex.

For detailed information about how integration_tests operates, see [the Q&A]
(@ref how-to-write-integration-tests-how-does-integration-tests-work) section below.

## Integration test with multiple executables {#how-to-write-integration-tests-integration-test-with-multiple-executables}

In the my_cool_pkg example, only one executable is added to the integration test. Typically,
the goal is to test the interaction between several executables. Suppose my_cool_pkg has
two executables, a talker and a listener which communicate with each other with a ROS2
topic.

The launcher starts the talker and listener at the same time. The talker starts incrementing
the index and sending it to the listener. The listener receives the index and prints it to
stdout. The passing criteria for the test is is if listener receives the indices 10, 15, and
20.

Here are the steps to add multiple-executable integration tests:


	
	Create two files
	
	~/workspace/src/my_cool_pkg/test/expected_outputs/talker_exe.regex with content .*


	~/workspace/src/my_cool_pkg/test/expected_outputs/listener_exe.regex with content













	```{bash}
	10
15
20





```
2. Under the BUILD_TESTING code block, call integration_tests to add the test
```cmake
…
find_package(integration_tests REQUIRED)
integration_tests(


EXPECTED_OUTPUT_DIR “${CMAKE_SOURCE_DIR}/test/expected_outputs/”
COMMANDS
“talker_exe –topic TOPIC:::listener_exe –topic TOPIC”





)


	```
	
	The character set ::: is used as delimiter of different executables




2. integration_tests parses the executables, arguments, and composes a valid test python
script
3. More information about the python script can be found in the
[Q&A](@ref how-to-write-integration-tests-how-does-integration-tests-work) section





3. Build ~/workspace/, or just the my_cool_pkg package, using colcon:
`{bash}
$ ade enter
ade$ cd ~/workspace/
ade$ colcon build --merge-install --packages-select my_cool_pkg
`
4. Run the integration test
```{bash}
$ ade enter
ade$ cd ~/workspace/
ade$ colcon test –merge-install –packages-select my_cool_pkg –ctest-args -R integration
Starting >>> my_cool_pkg
Finished <<< my_cool_pkg [20.8s]

Summary: 1 package finished [22.3s]
```

When the environment is properly configured, after 20 seconds, the integration test shall pass.
Similar to the single node example, the launcher starts the talker and listener at the same
time. The launcher periodically checks the stdout of each executable.

The regex of talker is .*, which always matches when the first output of talker
is captured by launcher. The regex of listener is 10, 15, and 20. After all entries in this
regex are matched, a SIGINT is sent to all commands and the test is marked as successful.

The locations of output files are the same with single executable example. Output of ctest is
is ~/workspace/log/latest_test/my_cool_pkg/. Output of tested executables is stored in
~/workspace/build/my_cool_pkg/test_results/my_cool_pkg/ in jUnit format.

note
By the time SIGINT is sent, all the regex have to be successfully matched in the output.
Otherwise the test is marked as failed. For example, if the regex for talker is 30, the test
will fail.

## Use executables from another package {#how-to-write-integration-tests-use-executables-from-another-package}

Sometimes an integration test needs to use executables from another package. Suppose
my_cool_pkg needs to test with the talker and listener defined in demo_nodes_cpp. These two
executables must be exported by demo_nodes_cpp and then imported by my_cool_pkg.

When declaring the test, a namespace must be added before talker and listener to indicate that
executables are from another package.

Use the following steps to add an integration test:

1. Add <buildtool_depend>ament_cmake</buildtool_depend> to
~/workspace/src/demo_nodes_cpp/package.xml


	In ~/workspace/src/demo_nodes_cpp/CMakeLists.txt, export the executable target before
calling ament_package()
```cmake
install(TARGETS talker EXPORT talker


DESTINATION lib/${PROJECT_NAME})





	install(TARGETS listener EXPORT listener
	DESTINATION lib/${PROJECT_NAME})





find_package(ament_cmake REQUIRED)
ament_export_interfaces(talker listener)
```



	
	Create two regex files
	
	~/workspace/src/my_cool_pkg/test/expected_outputs/demo_nodes_cpp__talker.regex





with content .*





	~/workspace/src/my_cool_pkg/test/expected_outputs/demo_nodes_cpp__listener.regex





with content 20












4. In ~/workspace/src/my_cool_pkg/package.xml, add the dependency to demo_nodes_cpp
`cmake
<test_depend>demo_nodes_cpp</test_depend>
`
5. Under the BUILD_TESTING code block in ~/workspace/src/my_cool_pkg/CMakeLists.txt, call
integration_tests to add the test
```cmake
…
find_package(integration_tests REQUIRED)
find_package(demo_nodes_cpp REQUIRED) # this line imports targets(talker) defined in namespace demo_nodes_cpp
integration_tests(


EXPECTED_OUTPUT_DIR “${CMAKE_SOURCE_DIR}/test/expected_outputs/”
COMMANDS
“demo_nodes_cpp::talker:::demo_nodes_cpp::listener” # format of external executable is namespace::executable [–arguments]







)

`
6. Build `~/workspace/`, or just the `my_cool_pkg` package, using `colcon`:
```{bash}
$ ade enter
ade$ cd ~/workspace/
ade$ colcon build --merge-install --packages-select my_cool_pkg
`
7. Run the integration test
`{bash}
$ ade enter
ade$ cd ~/workspace/
ade$ colcon test --merge-install --packages-select my_cool_pkg --ctest-args -R integration
`

When ament_export_interfaces(talker listener) is called in demo_nodes_cpp, ament generates a
demo_nodes_cppConfig.cmake file which is used by find_package. The namespace in this file is
demo_nodes_cpp. Therefore, to use executable in demo_nodes_cpp, a namespace and :: has to be
added.

The format of an external executable is namespace::executable –arguments. The
integration_tests function sets the regex file name as namespace__executable.regex.
One exception is that no namespace is needed for executable defined in the package that adds
this integration test.

## Add multiple integration tests in one package {#how-to-write-integration-tests-add-multiple-integration-tests-in-one-package}

If my_cool_pkg has multiple integration tests added with the same executable but different
parameters, SUFFIX has to be used when calling integration_tests.

Suppose my_cool_pkg has an executable say_hello which prints Hello {argv[1]} to the screen.
Here are the steps to add multiple
integration tests:


	
	Create two regex files
	
	~/workspace/src/my_cool_pkg/test/expected_outputs/say_hello_Alice.regex





with content HellosAlice





	~/workspace/src/my_cool_pkg/test/expected_outputs/say_hello_Bob.regex





with content HellosBob












2. Call integration_tests to add integration test
```cmake
integration_tests(


EXPECTED_OUTPUT_DIR “${CMAKE_SOURCE_DIR}/test/expected_outputs/”
COMMANDS “say_hello Alice”
SUFFIX “_Alice”




)
integration_tests(


EXPECTED_OUTPUT_DIR “${CMAKE_SOURCE_DIR}/test/expected_outputs/”
COMMANDS “say_hello Bob”
SUFFIX “_Bob”





)

3. Build ~/workspace/, or just the my_cool_pkg package, using colcon:
`{bash}
$ ade enter
ade$ cd ~/workspace/
ade$ colcon build --merge-install --packages-select my_cool_pkg
`
4. Run the integration test
`{bash}
$ ade enter
ade$ cd ~/workspace/
ade$ colcon test --merge-install --packages-select my_cool_pkg --ctest-args -R integration
`

By specifying SUFFIX, integration_tests adds the correct suffix to the regex file path.

# Q&A

## How does integration_tests work {#how-to-write-integration-tests-how-does-integration-tests-work}

integration_tests is a wrapper of
[ament_add_pytest_test](https://github.com/ament/ament_cmake/blob/master/ament_cmake_pytest/cmake/ament_add_pytest_test.cmake).
integration_tests receives organized commands, test name, and expected outputs as arguments.

The arguments include:


	TESTNAME: optional, a string of integration test name


	
	EXPECTED_OUTPUT_DIR: required, an absolute path where the expected output files are stored
	
	Files under this directory will be copied to




~/workspace/build/package-name/expected_outputs/ with the suffix added







	
	COMMANDS: required, a series of ::: separated commands
	
	For example, talker_exe –topic TOPIC:::${LISTENER_EXE} –topic TOPIC










	SUFFIX: optional, a string that will be appended to the regex file name




When integration_tests is called by my_cool_pkg with correct arguments:

1. integration_tests splits COMMANDS using :::, so that
talker_exe –topic TOPIC:::${LISTENER_EXE} –topic TOPIC becomes a list:
talker_exe –topic TOPIC;listener_exe –topic TOPIC
2. Next integration_tests splits each command by a space, and extracts the executables and
arguments
3. integration_tests replaces each executable with [generator_expression]
(https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html)
$<TARGET_FILE:${executable}>



	Using this method, cmake is able to find the path to the executable







4. If EXPECTED_OUTPUT_DIR is specified, integration_tests copies files under
EXPECTED_OUTPUT_DIR to ~/workspace/build/my_cool_pkg/expected_outputs/ with the proper suffix
5. integration_tests generates a list of expected regex files, each of which has the
following format: ~/workspace/build/my_cool_pkg/expected_outputs/[namespace__]executable[SUFFIX]
6. integration_tests configures a python script test_executables.py.in that uses ROS launch
to start all processes and checks the outputs

## How are regex files prepared {#how-to-write-integration-tests-how-are-regex-files-prepared}

The simplest way to prepare a regex file corresponding to an executable is to put it under
~/workspace/src/package-name/test/expected_outputs/ and pass this as EXPECTED_OUTPUT_DIR to
integration_tests. If this file needs to be generated dynamically, the upstream
package can create the file
~/workspace/build/package  -name/expected_outputs/executable[suffix].regex with the
expected regex. integration_tests doesn’t care how this file is generated, as long as
it’s in the correct place.

## How is the regex file handled {#how-to-write-integration-tests-how-is-the-regex-file-handled}

A regex file will first be delimited by a line break and then stored in a list. Every time the
launcher gets a callback from stdout, the launcher tries to match each regex in the list against
stdout and removes the regex that gets matched from the list.

When the regex list of the last executable becomes empty, a SIGINT is broadcast to all
executables. The test is marked as passed successfully if the regex lists of all executables are
empty, and a SIGINT is broadcast to all executables.









            

          

      

      

    

  

    
      
          
            
  
How to Write Tests and Measure Coverage {#how-to-write-tests-and-measure-coverage}

@tableofcontents

# Goals {#how-to-write-tests-and-measure-coverage-goals}

This article motivates developers to test code, explains the importance of testing, and details the
testing performed in Autoware.Auto.

Furthermore, this article details how to write unit tests, how to run unit tests, and how
to track code test coverage.

# Quick reference {#how-to-write-tests-and-measure-coverage-quick-reference}

1. [colcon](https://github.com/ros2/ros2/wiki/Colcon-Tutorial) is the tool of choice for building
and running tests
2. [ament_cmake](https://github.com/ament/ament_cmake) is useful to specify tests in CMake
3. Chris Hobbs’ [Embedded Software Development for Safety Critical Systems](https://www.amazon.com/Embedded-Software-Development-Safety-Critical-Systems/dp/1498726704),
describes tests necessary for code running in safety critical environments
4. [ISO 26262 standard](https://www.iso.org/standard/51362.html) part 6 prescribes
how to test code in automotive systems
5. [SQLite](https://www.sqlite.org/testing.html) is a software project that has an impressive and
thoroughly described testing system

# Importance of testing {#how-to-write-tests-and-measure-coverage-importance-of-testing}

Dynamic and static testing methods make Autoware.Auto reliable and robust, helping us to
perform anomaly detection and handling that would otherwise be difficult to find.
Through testing in Autoware.Auto, we can estimate the number of Heisenbugs, and find
and eliminate [undefined behaviours](https://blog.regehr.org/archives/1520) for
which C and C++ languages are known.

Dynamic analysis, simply called “testing” as a rule, means executing the code
while looking for errors and failures.

Static analysis means inspecting the code to look for faults. Static analysis is
using a program (instead of a human) to inspect the code for faults.

There are also formal verification methods (see the
[book](https://www.amazon.com/Embedded-Software-Development-Safety-Critical-Systems/dp/1498726704),
Chapter 15); note that the topics will not be covered in this document.

## Testing in Autoware.Auto {#how-to-write-tests-and-measure-coverage-testing}

This section introduces various types of tests that are run both manually and automatically.

### Style / linter tests {#how-to-write-tests-and-measure-coverage-style-linter-tests}

Some examples of tools used for style and linting are
[cpplint](https://github.com/google/styleguide/tree/gh-pages/cpplint),
[uncrustify](https://github.com/uncrustify/uncrustify).

Tests using the tools above allow Autoware.Auto to follow C and C++ style guides which results
in uniform, easy to read code.

### Static code analysis {#how-to-write-tests-and-measure-coverage-static-code-analysis}

The [Cppcheck](https://github.com/danmar/cppcheck) tool is used for applications
written in Autoware.Auto.

Static code analysis tools detect the following types of errors:


	API usage errors


	Best practice coding errors


	Buffer overflows


	Build system issues


	Class hierarchy inconsistencies


	Code maintainability issues


	Concurrent data access violations


	Control flow issues


	Cross-site request forgery (CSRF)


	Cross-site scripting (XSS)


	Deadlocks


	Error handling issues


	Hard-coded credentials


	Incorrect expression


	Insecure data handling


	Integer handling issues


	Integer overflows


	Memory—corruptions


	Memory—illegal accesses


	Null pointer dereferences


	Path manipulation


	Performance inefficiencies


	Program hangs


	Race conditions


	Resource leaks


	Rule violations


	Security best practices violations


	Security misconfigurations


	SQL injection


	Uninitialized members




### Unit tests {#how-to-write-tests-and-measure-coverage-unit-tests}

Unit testing is a software testing method by which individual units of source code
are tested to determine whether they are fit for use.

The tool used for unit testing is [gtest](https://github.com/google/googletest).
A full working example is provided below.

### Integration tests {#how-to-write-tests-and-measure-coverage-integration-tests}

In integration testing, the individual software modules are combined and tested as a group.
Integration testing occurs after unit testing.

Since integration testing greatly depends on the system architecture, Autoware.Auto provides an
integration testing tool called
[integration_tests](@ref integration-testing).

While performing integration testing, the following subtypes of tests are written:


	Fault injection testing


	Back-to-back comparison between a model and code


	Requirements-based testing


	Anomaly detection during integration testing


	Random input testing




### Memory tests {#how-to-write-tests-and-measure-coverage-memory-tests}

Memory tests allow the detection of unwanted calls to memory management APIs, such as:


	malloc


	calloc


	realloc


	free




For more details on memory tests see the
[memory testing](https://github.com/osrf/osrf_testing_tools_cpp#memory_tools) tool.

### Software and Hardware-In-Loop tests {#how-to-write-tests-and-measure-coverage-software-and-hardware-in-loop-tests}

With software in the loop (SIL) and hardware in the loop (HIL) testing the integration of
Autoware.Auto with real sensors and ECUs is proven, as shown in the image below.

These types of tests assure that Autoware.Auto remains compatible with sensor interfaces
and specific firmware versions, for example:

![Hardware-in-the-loop setup at Apex.AI](images/hil.jpg)

### Road tests {#how-to-write-tests-and-measure-coverage-road-tests}

Tests are written for Autoware.Auto applications, which are deployed and tested on the
autonomous vehicles.

These road tests validate Autoware.Auto in a realistic autonomous vehicle product. Along with road
tests, Autoware.Auto also performs integration testing with the research-focused counter-part
[Autoware](https://github.com/CPFL/Autoware).

![Apex.AI’s testing vehicle](images/lexus.jpg)

# Write, build, run, and analyze unit tests {#how-to-write-tests-and-measure-coverage-write-build-run-and-analyze-unit-tests}

Autoware.Auto uses the ament_cmake framework to write, build, and run tests. The same
framework is also used to analyze the test results.

ament_cmake provides several convenience functions to make it easier to write
CMake-based packages:

1. Generate a CMake configuration file for the package, which allows for passing information
(e.g. about include directories and libraries) to downstream packages



	This feature makes it easy to pass along information from recursive dependencies (and takes





care of ordering include directories)








	
	Easy interface to register tests and ensure that JUnit-compatible result files are generated
	
	Currently supports a few different testing frameworks like pytest, gtest, and gmock












3. Allows a package to generate environment hooks to extend the environment, for example by
extending the PATH
4. Provides a CMake API to read and write ament resource index entries



	The index is created at build time and provides efficient access to information







like the available packages, messages, etc.
5. Provides an uninstall target for convenience

See below for an example of using ament_cmake_gtest with colcon test. All other tests follow
a similar pattern.

This example assumes that the package my_cool_pkg is generated with
[autoware_auto_create_package](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/tree/master/src/tools/autoware_auto_create_pkg).

## Writing a unit test with gtest {#how-to-write-tests-and-measure-coverage-writing-unit-test-with-gtest}

In my_cool_pkg/test, create the gtest entrypoint gtest_main.cpp:

```{cpp}
#include “gtest/gtest.h”
#include “my_cool_pkg/my_cool_pkg.hpp”
int main(int argc, char * argv[])
{


::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();





}

Create the gtest code file test_my_cool_pkg.cpp:

```{cpp}
#include “gtest/gtest.h”
#include “my_cool_pkg/my_cool_pkg.hpp”
TEST(test_my_cool_pkg, test_hello) {


EXPECT_EQ(my_cool_pkg::print_hello(), 0);







}

For more examples of gtest features, see the
[gtest repo](https://github.com/google/googletest).

Add an entry under BUILD_TESTING in the CMakeLists.txt to compile the test the test code
source files:

`
find_package(ament_cmake_gtest)
set(TEST_SOURCES test/gtest_main.cpp test/test_my_cool_pkg.cpp)
set(TEST_MY_COOL_PKG_EXE test_my_cool_pkg)
ament_add_gtest(${TEST_MY_COOL_PKG_EXE} ${TEST_SOURCES})
`

The entrypoint main calls all tests that are registered as gtest items.

To register a new gtest item, wrap the test code with the macro TEST (). TEST ()
is a predefined macro that helps generate the final test code, and also registers
a gtest item.

gtest/gtest.h also contains predefined macros of gtest like ASSERT_TRUE(condition),
ASSERT_FALSE(condition), ASSERT_EQ(val1,val2), ASSERT_STREQ(str1,str2),
EXPECT_EQ(), etc. ASSERT_* will abort the test if the condition is not
satisfied, while EXPECT_* will mark the test as failed but continue to next test
condition. More information about gtest can be found in the
[gtest repo](https://github.com/google/googletest).

In the demo CMakeLists.txt, ament_add_gtest is a predefined macro in ament_cmake
that helps simplify adding gtest code. Details can be viewed in
[ament_add_gtest.cmake](https://github.com/ament/ament_cmake/blob/master/ament_cmake_gtest/cmake/ament_add_gtest.cmake).

### Build test {#how-to-write-tests-and-measure-coverage-build-test}

By default, all necessary test files (ELF, CTesttestfile.cmake, etc.) are compiled by colcon:

`{bash}
ade$ cd ~/workspace/
ade$ colcon build --merge-install --packages-select my_cool_pkg
`

Test files are generated under ~/workspace/build/my_cool_pkg.

### Run test {#how-to-write-tests-and-measure-coverage-run-test}

To run test on a specific package, call:

```{bash}
ade$ colcon test –merge-install –packages-select my_cool_pkg

Starting >>> my_cool_pkg
Finished <<< my_cool_pkg [7.80s]

Summary: 1 package finished [9.27s]
```

note
Remove –merge-install if the package is built without –merge-install, which is
equivalent to adding –isolated to ament.py build (the legacy build tool).

The test command output contains a brief report of all the test results.

To get job-wise information of all executed tests, call:

```{bash}
ade$ colcon test-result –all

build/my_cool_pkg/test_results/my_cool_pkg/copyright.xunit.xml: 8 tests, 0 errors, 0 failures, 0 skipped
build/my_cool_pkg/test_results/my_cool_pkg/cppcheck.xunit.xml: 6 tests, 0 errors, 0 failures, 0 skipped
build/my_cool_pkg/test_results/my_cool_pkg/cpplint.xunit.xml: 6 tests, 0 errors, 0 failures, 0 skipped
build/my_cool_pkg/test_results/my_cool_pkg/lint_cmake.xunit.xml: 1 test, 0 errors, 0 failures, 0 skipped
build/my_cool_pkg/test_results/my_cool_pkg/my_cool_pkg_exe_integration_test.xunit.xml: 1 test, 0 errors, 0 failures, 0 skipped
build/my_cool_pkg/test_results/my_cool_pkg/pclint.xunit.xml: 0 tests, 0 errors, 0 failures, 0 skipped
build/my_cool_pkg/test_results/my_cool_pkg/test_my_cool_pkg.gtest.xml: 1 test, 0 errors, 0 failures, 0 skipped
build/my_cool_pkg/test_results/my_cool_pkg/uncrustify.xunit.xml: 6 tests, 0 errors, 0 failures, 0 skipped

Summary: 29 tests, 0 errors, 0 failures, 0 skipped

```

Look in the ~/workspace/log/test_<date>/<package_name> directory for all the raw test
commands, std_out, and std_err. There’s also the ~/workspace/log/latest_*/ directory
containing symbolic links to the most recent package-level build and test output.

To print the tests’ details while the tests are being run, use the
–event-handlers console_cohesion+ option to print the details directly to the console:

```{bash}
ade$ colcon test –merge-install –event-handlers console_cohesion+ –packages-select my_cool_pkg

…
test 1


Start 1: test_my_cool_pkg




1: Test command: /usr/bin/python3 “-u” “~/workspace/install/share/ament_cmake_test/cmake/run_test.py” “~/workspace/build/my_cool_pkg/test_results/my_cool_pkg/test_my_cool_pkg.gtest.xml” “–package-name” “my_cool_pkg” “–output-file” “~/workspace/build/my_cool_pkg/ament_cmake_gtest/test_my_cool_pkg.txt” “–command” “~/workspace/build/my_cool_pkg/test_my_cool_pkg” “–gtest_output=xml:~/workspace/build/my_cool_pkg/test_results/my_cool_pkg/test_my_cool_pkg.gtest.xml”
1: Test timeout computed to be: 60
1: – run_test.py: invoking following command in ‘~/workspace/src/my_cool_pkg’:
1:  - ~/workspace/build/my_cool_pkg/test_my_cool_pkg –gtest_output=xml:~/workspace/build/my_cool_pkg/test_results/my_cool_pkg/test_my_cool_pkg.gtest.xml
1: [==========] Running 1 test from 1 test case.
1: [———-] Global test environment set-up.
1: [———-] 1 test from test_my_cool_pkg
1: [ RUN      ] test_my_cool_pkg.test_hello
1: Hello World
1: [       OK ] test_my_cool_pkg.test_hello (0 ms)
1: [———-] 1 test from test_my_cool_pkg (0 ms total)
1:
1: [———-] Global test environment tear-down
1: [==========] 1 test from 1 test case ran. (0 ms total)
1: [  PASSED  ] 1 test.
1: – run_test.py: return code 0
1: – run_test.py: inject classname prefix into gtest result file ‘~/workspace/build/my_cool_pkg/test_results/my_cool_pkg/test_my_cool_pkg.gtest.xml’
1: – run_test.py: verify result file ‘~/workspace/build/my_cool_pkg/test_results/my_cool_pkg/test_my_cool_pkg.gtest.xml’
1/8 Test #1: test_my_cool_pkg ……………….   Passed    0.09 sec

…

100% tests passed, 0 tests failed out of 8

Label Time Summary:
copyright      =   0.31 sec (1 test)
cppcheck       =   0.31 sec (1 test)
cpplint        =   0.38 sec (1 test)
gtest          =   0.09 sec (1 test)
integration    =   0.58 sec (1 test)
lint_cmake     =   0.31 sec (1 test)
linter         =   7.23 sec (6 tests)
pclint         =   5.57 sec (1 test)
uncrustify     =   0.35 sec (1 test)

Total Test time (real) =   7.91 sec
…
```

# Coverage  {#how-to-write-tests-and-measure-coverage-coverage}

Loosely described, a coverage metric is a measure of how much of the program code
has been exercised (covered) during testing.

In Autoware.Auto the [lcov tool] (http://ltp.sourceforge.net/documentation/technical_papers/gcov-ols2003.pdf)
(which uses gcov internally) is used to measure:


	Statement coverage


	Function coverage


	Branch coverage




lcov also collects the results and generates html to visualize the coverage information.

Coverage for the latest successful CI run on the master branch is
[here](https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/coverage/index.html).

Use the commands below to generate coverage information for my_cool_pkg:

note package_coverage.sh prompts to delete build, install, and log directories, if present. Answer with y to
delete, or clean your build before generating the coverage report.

`{bash}
ade$ cd AutowareAuto
ade$ git lfs install
ade$ git lfs pull --include="*" --exclude=""
ade$ vcs import < autoware.auto.$ROS_DISTRO.repos
ade$ ./tools/coverage/package_coverage.sh my_cool_pkg
ade$ ./tools/coverage/coverage.sh  # coverage of all packages
`

This produces the high-level coverage report and also generates a coverage folder with an index.html file in it
assuming the build and tests passed successfully. The resulting lcov/index.html will have a similar form to the
following:

![Example lcov output](images/lcov_result.jpg)

In Autoware.Auto, there is a separate “coverage” job as part of the CI pipeline that measures and reports the test
coverage of a merge request:

@image html images/coverage-test-job.png “coverage test job”

and the summary statistics are printed near the end of the log output:

@image html images/coverage-ci-output.png “coverage test job summary”







            

          

      

      

    

  

    
      
          
            
  
Writing Documentation {#writing-documentation}

@tableofcontents

# General

The Autoware.Auto documentation is created with the doxygen tool based on text files written in
markdown; see [markdown in doxygen](https://www.doxygen.nl/manual/markdown.html) for details.

## Rendering {#documentation-rendering}

Verify the documentation builds without errors and appears as desired by building locally first:


docs/.doxygen/build.py




At the end of the long output of this command, the entry point is displayed. Open in a web browser


Documentation has been built in: /home/user/AutowareAuto/docs/_build/html/index.html




### In CI

As a final check before merging, validate that the documentation built in CI is correct by browsing
the artifacts of the docs stage of the merge request’s build job. The URL will be similar to the
following but the build job ID has to be modified

https://autowarefoundation.gitlab.io/-/autoware.auto/AutowareAuto/-/jobs/BUILD_JOB_ID/artifacts/docs/_build/html/index.html

To select the docs with a mouse, first open the pipeline of the merge request on GitLab, then select the docs job:

@image html images/documentation-build-ci.png “Select the docs build job”

Finally browse the artifact and select the html file(s) modified in the merge request.

@image html images/documentation-browse.png “Browse the documentation artifact”

## Markdown guidelines

Lines in markdown shall in general be limited to 100 characters with exceptions when that’s
impractical; e.g.


	long links


	source code




To ease code review, it is recommended that each sentence start on a new line.
This doesn’t break paragraphs unless a blank line is included.

### Code snippets

Start a fenced code block and add the language (cpp, py, bash, xml …) for syntax highlighting in braces; e.g.,


```{cpp}
int main()
{


return 0;







## Images

Illustrations and screenshots are great to make a point and can save a lot of text. Place an image
into the docs/images folder and refer to it as


@image html images/foo.png “image caption”




This way of including ensures that doxygen fails if it cannot find the image. Optionally, one can
set e.g. the width of the image in the output in absolute or relative size to prevent a large image
from disrupting the reading flow:


@image html images/foo.png “image caption” width=1000px
@image html images/foo.png “image caption” width=50%




## Integrating a new document

Add an anchor for a new document; e.g.


#new-document




after the title and use the anchor to link to other parts of the documentation. A minimal example:

```md
New document {#new-document}
=================

@tableofcontents

# First section

# Second section
```

And within another foo.md, refer to the new document with:

`md
@ref new-document "See the new document"
`

Make sure the document is included by an appropriate index.md such that it appears at the desired
location; e.g.,

`md
- @subpage new-document
`

## Links from the outside

Documents that link to a section in the doxygen output also need an anchor for that URL to be stable with respect to
documentation updates. To that end, the anchor should have a prefix that’s unique to the page in which the section
lives.

Recommended

Inside document.md:

```md
@tableofcontents

# Foo {#document-foo}
```

then the URL is https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/document.html#document-foo

Discouraged

Inside document.md:

```md
@tableofcontents

# Foo
```

then the URL could be e.g. https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/document.html#autotoc_md21

Notice the autotoc_md21 at the end of the URL. Doxygen increments a counter to automatically
create URLs for sections without an anchor. If the section Foo is moved or another section added somewhere else, the URL may become invalid.

# Documenting a package {#documentation-package}

Packages shall be accompanied with a design document written in markdown; e.g. in
pkg_foo/design/pkg_foo-design.md. There can be several files in design/ if needed. The purpose
of the design document is to describe the intended behavior of a component. Serving as an entry
point for users unfamiliar with that component, it should explain at a sufficient abstraction level.

# Documenting source code {#documentation-source-code}

All C++ code that is to be consumed by someone else should be declared in header files and should
come with doxygen comments including classes, structs, methods, members etc.

Use the imperative to describe each entity. Finish each section with a period ..

For example:

``{c++}
/// Analyse input for consistency.
/// @param input The input, assumed `>= 1.2.
/// throws A std::invalid_argument if invalid.
explicit class Foo(double input);

/// return true if the input is valid.
bool valid() const;
```

## Comments inside code

Add comments where the code is not self-explanatory. When adding comments, think about
renaming/restructuring to make the code self-explanatory.

Don’t add this comment as it doesn’t provide useful information

`{cpp}
// distance
double distance = 3.2;
`





            

          

      

      

    

  

    
      
          
            
  
Design {#design}

This section describes how the individual packages in Autoware.Auto are designed.

For an overview of the architecture and how the packages are connected to solve an ODD, refer to the
individual ODDs listed at @ref usage-odd-demos.


	@subpage autoware-common-design


	@subpage autoware-control-design


	@subpage autoware-drivers-design


	@subpage autoware-fusion-design


	@subpage autoware-localization-design


	@subpage autoware-mapping-design


	@subpage autoware-perception-design


	@subpage autoware-planning-design


	@subpage autoware-prediction-design


	@subpage autoware-tools-design


	@subpage autoware-urdf-design








            

          

      

      

    

  

    
      
          
            
  
Installation {#installation}

The supported environments are specified in @subpage target-environments.

The recommended method for installation is through the use of [ADE](https://ade-cli.readthedocs.io/en/latest/),
a Docker-based tool to ensure that all developers in a project have a common, consistent development
environment. It comes with a pre-built version of Autoware.Auto, so that you will not need to compile it yourself
if you do not want to.


	@subpage installation-ade




Autoware.Auto can also be built without the use of [ADE](https://ade-cli.readthedocs.io/en/latest/)
for cases where a more granular control of the installation environment is needed.


	@subpage installation-no-ade




A prerequisite for running the full software stack with simulation is the LGSVL simulator:


	@subpage lgsvl








            

          

      

      

    

  

    
      
          
            
  
Installation with ADE {#installation-ade}

@tableofcontents

# Goals {#installation-and-development-goals}

This article demonstrates how to use the Agile Development Environment (ADE) to develop Autoware.Auto applications.

# Install ADE {#installation-and-development-install-ade}

[ADE](https://ade-cli.readthedocs.io/en/latest/) is a modular Docker-based tool to ensure that all developers in a project have a common, consistent development environment.

Follow the [install](https://ade-cli.readthedocs.io/en/latest/install.html) instructions, which are reproduced here for convenience:


	Verify that the requirements [listed here](https://ade-cli.readthedocs.io/en/latest/install.html#requirements) are fulfilled. In particular, if docker was not used before, one may need to go through the [docker post-install steps](https://docs.docker.com/engine/install/linux-postinstall/).


	Download the latest statically-linked binary for your platform from the [Releases](https://gitlab.com/ApexAI/ade-cli/-/releases) page of the ade-cli project


	Name the binary ade and install it in PATH. On Ubuntu, /usr/local/bin is recommended for system-wide installation, otherwise choose e.g. ~/.local/bin for a local installation that doesn’t require sudo rights.


	Make the binary executable: chmod +x ade


	Check that it is installed:




`{bash}
$ which ade
/path/to/ade
$ ade --version
<version>
`

# Setup ADE home and project checkout {#installation-and-development-setup-ade-home-and-project-checkout}

ADE needs a directory on the host machine which is mounted as the user’s
home directory within the container. The directory is populated with
dotfiles, and must be different than the user’s home directory
outside of the container. In the event ADE is used for multiple, projects it
is recommended to use dedicated adehome directories for each project.

ADE looks for a directory containing a file named .adehome
starting with the current working directory and continuing with the
parent directories to identify the ADE home directory to be mounted.

`
$ mkdir -p ~/adehome
$ cd ~/adehome
$ touch .adehome
`

For ADE to function, it must be properly configured. Autoware.Auto provides
an [.aderc](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/blob/master/.aderc) file
which is expected to exist in the current working
directory, or in any parent directory. Additionally, default configuration values can be
overridden by setting environment variables. See the ade –help output for more information about
using environment variables to define the configuration.

`
$ cd ~/adehome
$ git clone https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.git
`

## Sharing files between the host system and ADE
It might come in handy to share files such as dotfiles or utility programs from your host machine
with ADE. If you only have a single adehome directory, there is a way to do that without
duplicating them: move them inside the adehome directory, then create a symlink in the host system
to their regular location. For instance,

`
$ cd ~
$ mv ~/.bashrc ~/ade-home/.bashrc
$ ln -s ~/ade-home/.bashrc
`

It will then appear as ~/.bashrc to the host system and to ADE.

Another option is to put utility programs into ~/adehome/.local/bin and symlink. The opposite
direction will not work, files in a Docker container can not be symlinks to the outside.

@note The programs have to be self-contained! They should not depend on loading libraries from e.g.
/usr/lib.

# Entering the development environment

`
$ cd AutowareAuto
`

To start the default environment:

`
$ ade start --update --enter
`

There are several preconfigured environments to choose from by specifying an ADE rc file. To see
what is available, run

`
ls -l .aderc*
`

Choose one, then launch with:

`
ade --rc .aderc-amd64-foxy  start --update --enter
`

Congratulations! Now you should have a terminal inside ADE:

`
$ade:~$
`

The next steps are to proceed to @ref usage, or to work on the Autoware.Auto code itself as
described in @ref contributors-guide.

# What is where inside ADE?

Upon entering, ADE outputs the images used to create the environment; e.g.

`
$ ade enter
Entering ade with following images:
ade-foxy    | 8b1e0efdde07 | master  | registry.gitlab.com/autowarefoundation/autoware.auto/autowareauto/amd64/ade-foxy:master
binary-foxy | 0e582f863d4c | master  | registry.gitlab.com/autowarefoundation/autoware.auto/autowareauto/amd64/binary-foxy:master
foxy        | 2020.06      | 2020.06 | registry.gitlab.com/autowarefoundation/autoware.auto/ade-lgsvl/foxy:2020.06
`

The images are mounted under /opt:

`
@ade:~$ ls /opt
AutowareAuto # image: binary-foxy:master
lgsvl        # image: ade-lgsvl/foxy:2020.06
ros          # image: ade-foxy:master
`

The code in /opt/AutowareAuto is built from a particular version of the master branch of
Autoware.Auto. The master branch is built multiple times a day in CI; see the [container
registry](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/container_registry). With
ade … –update, the latest available version of each image is downloaded.

# Cleanup {#installation-and-development-cleanup}

ADE uses Docker, and over time unused images, containers, and volumes begin to clutter the hard
drive. Follow the steps below to clean the Docker file system of stale images.

## Start relevant Docker resources {#installation-and-development-start-relevant-docker-resources}

First, verify that ADE is running:

`
$ cd ~/adehome/AutowareAuto
$ ade start
`

If ADE is used for more than one project, verify all ADE instances are running; the same rule
applies for any other non-ADE Docker containers that should be preserved.

note
Docker resources that are not started/running will be removed!

## Docker disk usage {#installation-and-development-docker-disk-usage}

To assess the disk usage situation, run the following command:

`
$ docker system df
TYPE                TOTAL               ACTIVE              SIZE                RECLAIMABLE
Images              13                  11                  14.03GB             916.9MB (6%)
Containers          11                  0                   2.311MB             2.311MB (100%)
Local Volumes       17                  15                  5.411GB             17.8MB (0%)
Build Cache         0                   0                   0B                  0B
`

## Remove unused docker items {#installation-and-development-remove-unused-docker-items}

Use docker system prune to remove any Docker items not used for currently running containers:

`
$ docker system prune -a --volumes
`

# Troubleshooting {#ade-troubleshooting}
Here are solutions for a few specific errors:

## Error - “forward compatibility was attempted on non supported hw” when starting ADE

When starting ade with GPU support enabled for NVIDIA graphics, you may sometimes receive the following error:

`
docker: Error response from daemon: OCI runtime create failed: container_linux.go:349: starting container process caused "process_linux.go:449: container init caused \"process_linux.go:432: running prestart hook 0 caused \\\"error running hook: exit status 1, stdout: , stderr: nvidia-container-cli: initialization error: cuda error: forward compatibility was attempted on non supported hw\\\\n\\\"\"": unknown.
ERROR: Command return non-zero exit code (see above): 125
`

This usually indicates that a new NVIDIA graphics driver has been installed (usually via apt) but the system has not yet been restarted. A similar message may appear if the graphics driver is not available, for example because of resuming after suspend.

### Solution

Restart your system after installing the new NVIDIA driver.

## Error - “Unable to create the rendering window after 100 tries” when launching GUI application

If you have an NVIDIA GPU and are using the proprietary NVIDIA GPU driver, you may encounter this error when using the default .aderc or .aderc-arm64 files.
This is due to a decision that was made regarding support for users with and without NVIDIA GPUs and those with and without the proprietary NVIDIA driver.
For more information you can review the discussion that lead to this decision in [this issue](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/502).

To resolve this issue, simply remove the line export ADE_DISABLE_NVIDIA_DOCKER=true from the .aderc file that you are using and restart ade with:

`
ade$ exit
$ ade stop
$ ade start --update --enter
`





            

          

      

      

    

  

    
      
          
            
  
Installation w/o ADE {#installation-no-ade}

@tableofcontents

# Goals {#installation-noade-goals-noade}

This article demonstrates how to successfully build [Autoware.Auto](https://www.autoware.auto/) applications without the ade framework.

# Installation Requirements {#installation-noade-install-requirements}

To compile [Autoware.Auto project](https://www.autoware.auto/) from sources, the following tools must be installed in the system.


	Apt packages




`{bash}
$ sudo apt install -y git cmake python3-pip
`
- Python modules
`{bash}
$ pip3 install -U colcon-common-extensions vcstool
`

# ROS 2 core {#installation-noade-ros2-core}

First, the [ROS 2](https://index.ros.org/doc/ros2/) core components and tools must be installed. The full guide is available at [ROS 2 Installation](https://index.ros.org/doc/ros2/Installation/).
Once installed source the setup file:

`{bash}
source /opt/ros/$ROS_DISTRO/setup.bash
`
where ROS_DISTRO is one of the supported version mentioned in @ref target-environments-software.

# ROS 2 package dependencies {#installation-noade-ros2-dependencies}

[Autoware.Auto project](https://www.autoware.auto/) requires some [ROS 2](https://index.ros.org/doc/ros2/) packages in addition to the core components.
The tool rosdep allows an automatic search and installation of such dependencies.

`{bash}
$ sudo apt update
$ sudo apt install -y python3-rosdep
$ sudo rosdep init
$ rosdep update
`

Once installed, dependencies can be deduced from the sources of the [Autoware.Auto project](https://www.autoware.auto/).

`{bash}
$ git clone https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.git
$ cd AutowareAuto
$ vcs import < autoware.auto.$ROS_DISTRO.repos
$ rosdep install -y -i --from-paths src
`

Next, to compile the source code, see @ref building.





            

          

      

      

    

  

    
      
          
            
  
LGSVL simulator {#lgsvl}

@tableofcontents

# LGSVL simulator: running the LGSVL simulator alongside Autoware.Auto

LGSVL is a Unity-based multi-robot simulator for autonomous vehicle developers. It provides a simulated world to


	create sensor inputs to Autoware.Auto,


	allow the user to manually steer the ego vehicle similar to a computer game,


	place other moving traffic participants in a scene.




For more information about the simulator, see [https://www.lgsvlsimulator.com/docs/](https://www.lgsvlsimulator.com/docs/).

# Requirements

The following guide assumes that the LGSVL simulator will be run from inside an ADE container, although it is not strictly required.


	ADE 4.2.0 or later. Follow the




[ADE installation instructions](https://ade-cli.readthedocs.io/en/latest/install.html) to install it
- NVidia graphics card
- If using Docker engine version 19.03 or later, [install Native GPU Support](https://github.com/NVIDIA/nvidia-docker/wiki/Installation-(Native-GPU-Support)).
- If using Docker engine with a version less than 19.03, either upgrade Docker or [install nvidia-docker2](https://github.com/NVIDIA/nvidia-docker/wiki/Installation-(version-2.0))
- Cyclone DDS is the DDS vendor; see @ref choosing-a-dds-vendor

# Using the simulator

Using the simulator involves the following steps:

-# Launch it
-# Choose or create a simulation
-# Bridge the simulator with Autoware.Auto
-# Start the simulation

This section outlines these steps.

## Launching the simulator

Install ADE as described in the [installation section](@ref installation-ade):

Start ADE with the LGSVL volume:

`
$ cd ~/adehome/AutowareAuto
$ ade --rc .aderc-lgsvl start --update --enter
`

Pick a different .aderc-*-lgsvl file to manually choose a ROS version.

To start the LGSVL simulator, in the same terminal window:

`
ade$ /opt/lgsvl/simulator
`

Now start your favorite browser on the host system (outside of ADE!) and go to [http://127.0.0.1:8080](http://127.0.0.1:8080) where simulations can be configured.

@note When running LGSVL Simulator in a Docker container, the “Open Browser…” button in the simulator window does not work.

@note When running LGSVL Simulator for the first time, you may be asked to log into [https://account.lgsvlsimulator.com/](https://account.lgsvlsimulator.com/).
If you have an account, log in. If you do not have an account, create one, then log in.

### Troubleshooting

In case the simulator window opens up with a black screen and the application immediately terminates, remove conflicting graphics drivers from ADE with

`
ade$ sudo apt remove mesa-vulkan-drivers
`
and launch the simulator again.

## Creating a simulation

Creating a simulation configuration takes only a few clicks in the browser. The following steps assume that the launch was successful and illustrate the configuration process with the setup for the @ref avpdemo.

### Choosing a map

The goal is to create a map configuration for the AutonomouStuff parking lot. If that map is already available on the first launch of the simulation, nothings needs to be done.

Else follow the [LGSVL instructions](https://www.lgsvlsimulator.com/docs/maps-tab/#where-to-find-maps), click the Add new button and enter a name (e.g. AutonomouStuff parking lot) and the link to the asset bundle from [this site](https://content.lgsvlsimulator.com/maps/autonomoustuff/) containing the map data:

https://assets.lgsvlsimulator.com/ec057870762b5a967a451c93444b67d0b64e9656/environment_AutonomouStuff

Once submitted, this will download the map automatically.

@image html images/lgsvl-map.png “Choosing a map”

### Configuring a vehicle
The goal is to create a vehicle configuration for the AutonomouStuff parking lot.

Follow the [LGSVL instructions](https://www.lgsvlsimulator.com/docs/vehicles-tab/#how-to-add-a-vehicle),
to configure the Lexus model: click the vehicles tab, then Add new and enter
Lexus2016RXHybrid as name and

https://assets.lgsvlsimulator.com/ea5e32fe566065c6d1bbf1f0728d6654c94e375d/vehicle_AWFLexus2016RXHybrid

as Vehicle URL.

@image html images/lgsvl-vehicle.png “Adding a vehicle”

Once submitted, click on the wrench icon for the Lexus vehicle and


	Change the bridge type to Ros2NativeBridge


	In the Sensors box, copy and paste the content of  [lgsvl-sensors.json](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/blob/master/lgsvl-sensors.json) located at the root of the Autoware.Auto repository to tell LGSVL about sensor positions and where to communicate information to the Autoware.Auto stack.




@image html images/lgsvl-bridge-sensors.png “Configuring bridge and sensors”

The Ros2NativeBridge is a special bridge type which does not require a websocket-based bridge.
When a simulation is started, the topics should be published in ROS 2 automatically.

The above steps are a modified version of the
[LGSVL documentation](https://www.lgsvlsimulator.com/docs/autoware-auto-instructions/#run-simulator-alongside-autowareauto)

### Choosing/creating a simulation

Choose Simulations on the left to see the simulations screen. The LGSVL simulator lets you store and reuse multiple simulation configurations. To use an existing simulation, select the desired simulation and press the play button in the bottom right corner of the screen. The simulator should now start in the LGSVL window.

To create a new simulation, follow the below steps:


	Switch to the Simulations tab and click the Add new button.


	Enter a name and switch to the Map & Vehicles tab.


	Select the Lexus2016RXHybrid from the drop-down menu.


	Enter 127.0.0.1:9090 in the Ros2NativeBridge connction box.


	No changes to the Traffic or Weather tab are needed but one can play around here.


	Click submit.




@image html images/lgsvl-simulation-general.png “Configuring the simulation”
@image html images/lgsvl-simulation-map-and-vehicle.png “Configuring the simulation map and vehicle”

### Starting the simulation {#lgsvl-start-simulation}

Once the simulation has been created, select it by clicking on its white box first, then run it by clicking the play button.

@image html images/lgsvl-simulation-start.png “Starting the simulation” width=80%

The Lexus should appear in a 3D rendering in the LGSVL Simulator window (not in the browser).

The next step is to control the Lexus and to drive around. Press F1 to see a list of shortcuts and press the cookie button in bottom left corner for more UI controls.

The essential commands are to use the arrow keys to steer and accelerate, and the Page Up and Page Down keys to switch between forward and reverse driving.

Congratulations if everything is working up to this point. The setup of LGSVL is completed.

@image html images/lgsvl-controls.png “Controlling the Lexus”

@todo #850 Uncomment joystick session when tested again

<!– ### Controlling LGSVL with a joystick –>

<!– It is possible to control the simulation with a gamepad or joystick instead of a keyboard. Assuming just one joystick is plugged into the system, just map it into the Docker container when starting ADE by appending the proper –device flag: –>

<!– ` -->
<!-- $ ade start <ade arguments> -- --device /dev/input/js0 -->
<!-- ` –>

<!– @note The instructions in this section were tested with a Logitech Gamepad F310 –>

<!– #### Troubleshooting –>

<!– ### The brake/throttle/steering does not work –>

<!– The joystick control mapping is not deterministic. It is occasionally necessary to modify the axis –>
<!– mapping. –>

<!– First, with the joystick controller running, verify that you can see the raw messages by running –>
<!– the following: –>

<!– ` -->
<!-- $ ade enter -->
<!-- ade$ source /opt/AutowareAuto/setup.bash -->
<!-- ade$ ros2 topic echo /joy -->
<!-- ` –>

<!– Next, actuate the appropriate axis on the vehicle controllers to determine which buttons and joy –>
<!– sticks correspond to which indices in the Joy message. –>

<!– Update the src/tools/joystick_vehicle_interface/param/logitech_f310.defaults.param.yaml appropriately, or –>
<!– make a copy. –>

<!– ### There are no data on the /joy topic –>

<!– Ensure that /dev/input/js0 is available from within ADE. –>

<!– @todo Specific instructions. What should a user do exactly? –>

<!– If it is not available, restart ade, ensuring that the device is appropriately mounted. Alternatively, restart ade and run it with the –privileged flag, e.g.: –>

<!– ` -->
<!-- $ ade start <ade arguments> -- --privileged -->
<!-- ` –>

<!– ### The vehicle still does not move –>

<!– First, ensure the whole stack is running properly, and is appropriately configured. See the section –>
<!– above titled “No data are being sent through to ROS.” –>

<!– Next, ensure there are data on the /joy topic. If this is not the case, refer to the appropriate –>
<!– question. –>

# Bridging with Autoware.Auto

@todo update check section

LGSVL uses conventions which are not directly aligned with ROS 2 conventions. The full list of behaviors the lgsvl_interface implements is:
-# Converts control inputs with CCW positive rotations to the CCW negative inputs the LGSVL
simulator expects
-# Provides a mapping from VehicleControlCommand to the RawControlCommand LGSVL expects via
parametrizable 1D lookup tables

To run the lgsvl_interface manually, enter the following in a new terminal window:

Dashing:

`
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 run lgsvl_interface lgsvl_interface_exe __params:=/opt/AutowareAuto/share/lgsvl_interface/param/lgsvl.param.yaml
`

Foxy:

`
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 run lgsvl_interface lgsvl_interface_exe --ros-args --params-file /opt/AutowareAuto/share/lgsvl_interface/param/lgsvl.param.yaml
`

Launch scripts are also provided for convenience. For example for a joystick control demo, run the following in a new terminal window:

`
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 launch joystick_vehicle_interface_nodes lgsvl_joystick.launch.py
`

For an example of using VehicleControlCommand with LGSVL, run the following demo in a new terminal window:

`
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 launch lgsvl_interface lgsvl_vehicle_control_command.launch.py
`





            

          

      

      

    

  

    
      
          
            
  
System Dependencies and Target Environments {#target-environments}

@tableofcontents

Autoware.Auto targets the environments and applications listed below, for which automated tests ensure the code works properly. The target environments may change in future versions of Autoware.Auto.

The Autoware foundation provides no support on other platforms than those listed below.

# Target Hardware Platforms {#target-environments-hardware}


	amd64 / x86_64 (Intel/AMD)


	arm64 / aarch64 / arm64v8 (ARM v8, 64-bit)




# Target Software Platforms {#target-environments-software}


ROS Version                         | Operating System | System Dependencies



|-------------------------------------|——————|------------------------------------------------------------------------------------------------|
| ROS2 Foxy (active development)  | Ubuntu 20.04 LTS | [REP-2000 section](https://www.ros.org/reps/rep-2000.html#foxy-fitzroy-may-2020-may-2023)      |
| ROS2 Dashing (maintenance only) | Ubuntu 18.04 LTS | [REP-2000 section](https://www.ros.org/reps/rep-2000.html#dashing-diademata-may-2019-may-2021) |





            

          

      

      

    

  

    
      
          
            
  
Support Guidelines {#support-guidelines}

@tableofcontents

# Overview{#support-guidelines-overview}

We provide several mechanism for getting help and this article describes those mechanisms.
Whether you have run into a problem using Autoware.Auto or you just want more information about some aspect of it not covered in the documentation, one of the below options should have you covered.
Using the correct resource will ensure you get a helpful response to your query quickly.
The following should be the general set of steps for obtaining support, depending on your specific need:


	Read the docs


	Depending on your question:






	Ask support questions and describe unconfirmed bugs on [ROS Answers with the autoware tag](https://answers.ros.org/questions/ask/?tags=autoware)


	Start general Autoware discussions on [the Autoware category at ROS Discourse](https://discourse.ros.org/c/autoware)


	For confirmed bugs or feature requests, create a [new issue on the Autoware.Auto Gitlab](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/new?issue%5Bassignee_id%5D=&issue%5Bmilestone_id%5D=)








	Message the committers-autoware-auto channel [on the Autoware Developer’s Slack](https://autoware.herokuapp.com/)




# General Information: Documentation{#support-guidelines-general-info}

Whether you are looking to get help [installing Autoware.Auto](@ref installation), looking for [developer best-practices](@ref contributor-guidelines), or you just want to [run a demo](@ref usage), the auto-generated documentation should be your first resource.
If you find information missing in the docs, please [create a new issue](@ref support-guidelines-gitlab-issues) and, optionally, create a merge request to add the information to the docs yourself.

# Support Questions: ROS Answers{#support-guidelines-ros-answers}

If you have a problem with Autoware.Auto and it has not yet been confirmed by others, start your quest at [ROS Answers with the autoware tag](https://answers.ros.org/questions/scope:all/sort:activity-desc/tags:autoware/page:1/).
Questions asked with the autoware tag are regularly reviewed by Autoware developers and maintainers as well as other members of the Autoware community.

If your question is not answered within a timely manner (read: at least 1 week - this is an open-source project), then feel free to escalate to either [ROS Discourse](https://discourse.ros.org/c/autoware) or the committers-autoware-auto channel [on Slack](https://autoware.herokuapp.com/).

# General Discussion: ROS Discourse{#support-guidelines-general-discussion}

If you want to discuss a topic with the general Autoware community or ask a question not related to a problem with Autoware, head over to [the Autoware category on ROS Discourse](https://discourse.ros.org/c/autoware).
The Autoware category is also where high-level announcements are made about Autoware by the Foundation.

# Confirmed Bugs or Feature Requests: Gitlab Issues{#support-guidelines-gitlab-issues}

If you have discovered a bug that has been confirmed by others or you would like to request that a new feature be added to Autoware.Auto, consider [creating a new issue on Gitlab](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/new?issue%5Bassignee_id%5D=&issue%5Bmilestone_id%5D=) and choosing the relevant template.
If you have the background, feel free to also create a Merge Request to resolve the issue!
Just remember to read over our @ref contributors-guide to know what to expect from a review of your Merge Request.

# Real-time Communication: Autoware Developer’s Slack{#support-guidelines-slack}

Please remember that our [Slack server](https://autoware.herokuapp.com/) is not for any of the cases mentioned above and is mostly a gathering place for developers.
If you are seeking support, want to start a discussion, or want to request a feature, Slack is the wrong avenue.
However, if your question on [ROS Answers](@ref support-guidelines-ros-answers) has gone unanswered for a reasonable amount of time, messaging the committers-autoware-auto channel is appropriate.

The Autoware Developer’s Slack is a real-time communication mechanism for person-to-person or group chats.
If you want to take a quick straw-pull survey, chat with a group outside of the primary channels, or introduce yourself to the community, this is a good place to start.





            

          

      

      

    

  

    
      
          
            
  
Usage {#usage}

# Preparation
The instructions linked below assume that you have “sourced your installation”.
First, you must be in an ADE and/or have built Autoware.Auto yourself.

Then, execute either of those two:
`{bash}
# To use the preinstalled Autoware.Auto in ADE:
ade$ source /opt/AutowareAuto/setup.bash
# To use the Autoware you built yourself:
source ~/AutowareAuto/install/setup.bash
`

That will set a few environment variables, e.g. $AMENT_PREFIX_PATH. To reset those variables, it’s easiest to just open a new terminal.

If you forget to source the installation, trying to run any ros2 run or ros2 launch commands will only print something like:

`{bash}
Package 'autoware_demos' not found: "package 'autoware_demos' not found, searching: ['/opt/ros/foxy']"
`

Many launch configurations rely on a point cloud map, which is managed via git lfs. To download it, do
`
git lfs pull --exclude="" --include="*"
`

In case you run multiple ROS2 applications on machines in the same network, they will interfere with each other.
To avoid it, set the environment variable ROS_DOMAIN_ID to a distinct value between 0 and 232 on the machines.

# Operational Design Domain (ODD) Demos {#usage-odd-demos}

Autoware.Auto includes a growing number of demonstrations for target Operational Design Domains (ODDs), where an ODD is a formal definition of the set of conditions and circumstances an automated vehicle is designed to operate under (for reference, see [SAE J3016 section 3.22](https://www.sae.org/standards/content/j3016_201806/)).

Each demonstration exhibits the capabilities of the software within the ODD, such as the ability to park a car in a parking lot ODD, or the ability to drive a route through an urban setting in an urban ODD.
Most demonstrations are intended to be used on both a real car and in a simulator.
Each article below contains instructions on how to set up, launch and control one demonstration.
For demonstrations that work on a real car, the hardware requirements are also described.


	@subpage avpdemo (@subpage avpdemo-impressions “Impressions”)




# General Demos {#usage-general-demos}

The following pages describe how to run demonstrations which showcase specific pieces of functionality within the Autoware.Auto architecture.


	@subpage behavior-planner-howto


	@subpage global-planner-howto


	@subpage ndt-initialization


	@subpage ekf-localization-howto


	@subpage trajectory-following-howto


	@subpage perception-stack-howto


	@subpage recordreplay-planner-howto


	@subpage rosbag-localization-howto








            

          

      

      

    

  

    
      
          
            
  
Impressions from the Autonomous Valet Parking Demonstration {#avpdemo-impressions}

@tableofcontents

The autonomous valet parking demonstration was
[performed](https://www.autoware.org/post/autonomous-valet-parking-2020) at a carpark in San Jose,
CA, USA, in 2020. For details on how to (re-)create the demonstration, check @ref avpdemo.

Here are some video showcasing the stack’s performance.

@htmlonly

<iframe width=”560” height=”315” src=”https://www.youtube.com/embed/MC7n8vwiLcg” frameborder=”0” allow=”accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen></iframe>

<br>
<br>

<iframe width=”560” height=”315” src=”https://www.youtube.com/embed/mjibEToagkw” frameborder=”0” allow=”accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen></iframe>

<br>
<br>

<iframe width=”560” height=”315” src=”https://www.youtube.com/embed/b5-UlFHDVdI” frameborder=”0” allow=”accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen></iframe>

<br>
<br>

<iframe width=”560” height=”315” src=”https://www.youtube.com/embed/KuOshW2gB1Q” frameborder=”0” allow=”accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen></iframe>
@endhtmlonly





            

          

      

      

    

  

    
      
          
            
  
Autonomous Valet Parking Demonstration {#avpdemo}

@tableofcontents

@image html images/valet_parking.jpeg “Autonomous valet parking” width=800px

# Overview

The Autonomous Valet Parking (AVP) demonstration uses Autoware.Auto to provide a valet parking
service. It was realized in 2020 by Autoware members, described in more detail in this [blog
post](https://www.autoware.org/post/autonomous-valet-parking-2020).

The goal is to direct the car to autonomously park in a parking lot and to return autonomously to a
pick-up/drop-off area simply by using a smartphone.

The AVP demonstration uses Autoware.Auto to provide the following functions:


	Automatically drive a car from a pre-defined drop-off zone (e.g. the entrance to a car park) to a
parking spot indicated by an external system.


	Park a car in a parking spot, starting in a lane near that parking spot.


	Drive out of a parking spot.


	Drive to a pre-defined pick-up zone (e.g. the exit from a car park).


	Automatically stop for obstacles while achieving the above.




The easiest way to repeat the demonstration is to run it in @ref avpdemo-simulation.
Given appropriate hardware, it can of course be repeated in real life as well as detailed in @ref avpdemo-physical.

# Prerequisites {#avpdemo-prerequisites}

To run this demo, the following inputs are needed:


	A point-cloud map of a car park, for localization.


	An [HDMap (vector map)](@ref lanelet2-map-for-autoware-auto) of a car park, for navigation.




If @ref lgsvl is set up as explained, these two components should be available out of the box in simulation under /opt/AutowareAuto/share/autoware_auto_avp_demo/data.

# Simulation {#avpdemo-simulation}

To run the LGSVL simulator, an NVIDIA graphics card is required. Additional information about requirements can be found [here](https://www.lgsvlsimulator.com/docs/faq/#what-are-the-recommended-system-specs-what-are-the-minimum-required-system-specs).

These instructions were tested successfully on a number of machines, these are the specs of one such machine:


	Intel(R) Core(TM) i9-9900KF CPU @ 3.60GHz (16 virtual cores) with 64GB RAM


	NVIDIA GeForce RTX 2080 with 8 GB memory




@warning If the machine is overloaded by running both the simulation and the autonomous-driving stack, expect a performance degradation; see @ref avpdemo-simulation-troubleshooting-resources

## Setup and launching {#avpdemo-simulation-launch}

Running and controlling the simulation requires two separate terminals.

### Setup

-# @ref installation-and-development-install-ade.
-# Next open terminal 1 in ADE and follow the instructions on the @ref lgsvl page to install, configure, and run the simulator:


$ ade enter
ade$ /opt/lgsvl/simulator




@warning If starting the simulation immediately by pressing the play button in the LGSVL web GUI,
the Autoware.Auto stack will emit warnings and error messages upon launch until localization is
initialized (see section below). To avoid that, do not start the simulation yet; i.e., do not press
the Play button!

### Launching

-# Open a new terminal 2, run the launch file for Milestone 3 as follows to use the pre-compiled packages from /opt/AutowareAuto:



$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 launch autoware_auto_avp_demo ms3_sim.launch.py




Alternatively, if the source code has been modified locally, first build, then launch:


$ ade enter
ade$ cd AutowareAuto
ade$ colcon build –packages-up-to autoware_auto_avp_demo
ade$ source install/setup.bash
ade$ ros2 launch autoware_auto_avp_demo ms3_sim.launch.py




To interrupt the launched processes, hit Ctrl c. Turning the simulation off while building can save compute resources to accelerate the build.




When following the steps above, one RViz window should pop up showing what the Autoware.Auto stack
sees. The system is initially not localized, and the car is tentatively placed at the origin of the
map frame. Terminal 2 displays output related to starting the stack similar to:

`
[INFO] [robot_state_publisher-1]: process started with pid [20291]
[INFO] [lgsvl_interface_exe-2]: process started with pid [20292]
...
[rviz2-20] Parsing robot urdf xml string.
`

There should be no error messages; else check @ref avpdemo-simulation-troubleshooting.

By default, RViz is in the Move Camera mode, in which the mouse can control the view like this:
* left-click and drag to rotate
* middle-click to pan
* right-click to zoom

Change properties of how and if entities are shown in RViz from the panel on the left of the window.
Hide that panel by clicking on the little triangle pointing to the left. When that panel is hidden,
the output in RViz should look like this where the car is shown as a white outline:

@image html images/avp-uninitialized.png “Initial view, not localized” width=50%

## Initializing the localization {#avpdemo-simulation-init-localization}

In the LGSVL simulation, the vehicle is spawned at a particular location of the map that is
different from the origin. The NDT localizer used in the Autoware.Auto stack currently requires an
initial guess of the vehicle pose that is somewhere close to the truth. After that initial guess,
NDT should follow along when the car moves.

Detailed instructions are given at @ref ndt-initialization.

## Driving to the drop-off zone

Now that NDT is initialized, [run the simulation](@ref lgsvl-start-simulation) if it is not already running.

In order to reproduce the demo as in [real life](@ref avpdemo-impressions), manually drive the
vehicle from the spawning point to the drop-off zone as shown on the image below. It may be
worthwhile to spend a minute or two to drive a few laps around the map to see what is where.

In the image below, orange boxes indicate lidar objects, red points indicate lidar points that are
generated as artificial input from simulation, and white dots indicate the point-cloud map used by the
localization system as a reference. All of these visualization can be toggled in RViz.

Having the car in the LGSVL simulation aligned with the position in RViz as in the image below means the system is properly localized and
ready for the next step.

@image html images/avp-drop-off-zone.png “Location of drop-off area in LGSVL simulation and RViz” width=50%

@note One can alternatively drive to the drop-off zone first, and then initialize NDT there.

## Parking autonomously

In principle, the vehicle can park in any of the parking spots indicated in the map. In the physical
demo, the reference parking spot was the 5th spot on the right counting from the end of the lane of
the drop-off zone.

@anchor avp-parking-spots
@image html images/avp-parking-spots.png “Location of drop-off area and target parking spot” width=50%

From the drop-off zone, select a parking spot by clicking the 2D Goal Pose (in ROS2 Dashing: 2D Nav Goal) button in RViz, and click and select in the map to select a parking spot and the orientation of the car, implicitly selecting among head-in and reverse parking.

@image html images/avp-rviz-goal-pose.png “Selecting a parking spot with RViz” width=50%

The stack then starts to plan the trajectory and visualizes poses along the way. The planning task is separated into two steps, the lane following and the parking itself. In the parking phase, virtual obstacles are added to guide the vehicle into the right position.

@image html images/avp-rviz-parking.png “Parking planner visualized” width=50%

## Further maneuvers

Once parked, the vehicle can be directed to exit the parking spot and to return to the drop-off zone following the above procedure to send a new goal pose to the planner. The poses mentioned are just examples, the vehicle can alternatively be instructed to go to another pose on an arbitrary lane in the map, or one can try parking in other parking spots.

## Known limitations


	While a plan is executed, other goal poses are ignored. Either wait until the vehicle reached the target pose, or quit the stack and try again.


	Some parking spots on the map are too tight to fit the Lexus and the parking planner may fail, resulting in the vehicle not moving anymore.


	Targeting a parking spot on the same lanelet that the vehicle is currently on is not supported


	The vehicle needs to be in forward gear


	Once driven autonomously, driving manually won’t work anymore because the vehicle activates the brakes to stay in previously defined target location




@todo Does forward parking work?

## Controlling the vehicle through a web interface

As an alternative to selecting goal poses with a mouse in RViz, one can use a web interface that is launched with the rest of the stack.

Open http://127.0.0.1:8000/ on the host system in a web browser to send goal poses to the vehicle. This requires that


	the vehicle be manually driven to the location on the map indicated in the image [above](@ref avp-parking-spots),


	the stack be initialized and localized in the map




If the above conditions are satisfied, click e.g. the Reverse park button in the web browser. In essence, this  publishes a goal pose that the stack plans for. Monitor the pose coordinates with

`
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 topic echo /planning/goal_pose
`

@image html images/avp-web-interface.png “Autonomous valet parking web interface” width=40%

## Troubleshooting {#avpdemo-simulation-troubleshooting}

### Lack of computational resources {#avpdemo-simulation-troubleshooting-resources}

The computational demands of running the LGSVL simulator and the Autoware.Auto stack for the AVP demo in parallel are high and may not be met by commonly available laptops with a consumer-grade NVidia accelerator.

There are various manifestations pointing to this of lack resources:


	the localization is not able to follow the vehicle as it moves around in simulation and gets stuck at a past location,


	the localization jumps erratically while the vehicle does not move




Solution: Either run the simulation and the Autoware.Auto stack on separate machines (recommended), or run both on a more powerful computer with a better GPU.

### Localization

After starting the simulation and the stack, the console is full of errors like this:

`
[object_collision_estimator_node_exe-18] [WARN] [1613130016.283356960] [planning.object_collision_estimator_node]: on_bounding_box cannot transform base_link to map.
[behavior_planner_node_exe-19] [INFO] [1613130016.285522103] [planning.behavior_planner_node]: Waiting for localization result to become available
[lanelet2_global_planner_node_exe-15] [ERROR] [1613130016.285673175] [planning.lanelet2_global_planner_node]: Failed to transform Pose to map frame
[behavior_planner_node_exe-19] [INFO] [1613130016.320455277] [planning.behavior_planner_node]: Waiting for localization result to become available
[lanelet2_global_planner_node_exe-15] [ERROR] [1613130016.321167460] [planning.lanelet2_global_planner_node]: Failed to transform Pose to map frame
[p2d_ndt_localizer_exe-4] [ERROR] [1613130016.337780380] [localization.p2d_ndt_localizer_node]: Could not find a connection between 'map' and 'base_link' because they are not part of the same tree.Tf has two or more unconnected trees.
`

Solution: @ref avpdemo-simulation-init-localization

### Planner failure

If the global planner cannot reach a goal pose, it outputs the following message:

`
[lanelet2_global_planner_node_exe-15] [ERROR] [planning.lanelet2_global_planner_node]: Global route has not been found!
`

Solution: This can happen is the position is too close to the vehicle as the global planner does not consider reversing and doesn’t find a path within on lanelet in the map. Try a pose that is further away.

# Physical demonstration {#avpdemo-physical}

The physical AVP demonstration was performed at a car park in San Jose, CA, USA, in 2020 with a Lexus RX 450h equipped with


	the [Pacmod 3.0](https://autonomoustuff.com/product/small-ev-by-wire-kits/) DBW interface,


	2 [Velodyne VLP-32Cs](https://velodynelidar.com/products/ultra-puck/),


	an [AutonomouStuff Spectra](https://autonomoustuff.com/products/astuff-spectra) industrial PC,


	the [AutonomouStuff Speed and Steering Control](https://autonomoustuff.com/products/astuff-speed-steering-control-software) (SSC) software.




For videos of the Lexus performing the demonstration autonomously, please check @ref avpdemo-impressions.

# Setup and launching (hardware)

Using the hardware that is defined in the Physical Demo section above, the demonstration can be run on physical hardware only in parking lots for which a Lanelet2 map and lidar map are available.

To run the demonstration on a physical vehicle using your own maps:


	Replace the paths to the .pcd and .yaml files for the PCD map in the src/tools/autoware_auto_avp_demo/param/map_publisher_vehicle.param.yaml with paths to your own map files.


	Replace the path to the .osm file for the Lanelet2 map in the src/tools/autoware_auto_avp_demo/param/lanelet2_map_provider.param.yaml with the path to your own map file.




Whether using your own maps or the existing ones:


	@ref installation-and-development-install-ade


	In a new terminal, run the launch file for Milestone 3:




`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 launch autoware_auto_avp_demo ms3_vehicle.launch.py
`

# System architecture for the AVP ODD

The system architecture that was developed to address the AVP ODD in Autoware.Auto is given below:

![Autoware.Auto AVP Architecture](images/AVP_Architecture.png)

# Related packages


	@subpage avp-demo-package-design








            

          

      

      

    

  

    
      
          
            
  
Starting and testing the behavior planner {#behavior-planner-howto}

@tableofcontents

# How to start the stack

Start simulation as described in @ref lgsvl.
Additionally, to configure LGSVL for this demonstration:


	Maps: use this [map link](https://assets.dev.lgsvlsimulator.com/d5b8bb0b7f49875a8a4bbf83c50b3a4fe53779c7/environment_AutonomouStuff)


	Vehicles: Select ROS2 native bridge type and paste content of AutowareAuto/lgsvl-sensors.json into the Sensors text box




3. Simulations: In General tab, Select Cluster = Local Machine and untick any boxes.
In Map & Vehicles tab, ensure to untick Run simulation in interactive mode.
In Traffic tab, untick all selection.
The Weather tab is irrelevant

terminal 1
`
# start sim according to instructions above but don't drive away yet to make sure we can localize ourselves
`

terminal 2
`
> ade enter
ade$ cd AutowareAuto && source install/setup.bash
ade$ colcon build --packages-up-to autoware_auto_avp_demo
ade$ stdbuf -o L ros2 launch autoware_auto_avp_demo ms3_sim.launch.py
`

The stdbuf command above is needed because the default in ROS is to only output lines from stdout when the buffer is full.
This command changes that setting to use a “line buffer” which outputs every line, providing more debugging information.

terminal 3
`
> ade enter
ade$ ros2 topic echo /planning/trajectory
`

Move the vehicle on LGSVL to the position shown in the image.
This is the “pick-up/drop-off zone” on the parking lot roadway in front of the three parking spots directly outside of the front door of the AutonomouStuff building.
![StartPose](images/avp-demo-start-pose.png)

Before selecting a goal, you will need to initialize localization.
To do this switch to the rviz window, click the 2D Pose Estimate button at the top, and then click at the approximate location where the vehicle currently is in the map and drag in the direction of the vehicle’s heading.
You can verify that the vehicle has been localized by the vehicle model jumping to the new location and the real-time lider scans matching up with the static lidar map.

Next, to select a parking spot graphically, click the 2D Nav Goal button in rviz, click in the goal location, and drag in the direction of the goal heading.

Optionally, to send a goal position/heading programmatically:

terminal 4
`
> ade enter
ade$ ros2 topic pub /planning/goal_pose geometry_msgs/msg/PoseStamped '{header: {frame_id: "map"}, pose: {position: {x: -95.875, y: 57.707, z: -1.950}, orientation: {x: -0.021, y: 0.014,z: 0.901,w: 0.434}}'} --once
`

if you want to park in the backward direction, send:
`
> ade enter
ade$ ros2 topic pub /planning/goal_pose geometry_msgs/msg/PoseStamped '{header: {frame_id: "map"}, pose: {position: {x: -97.629, y: 59.872, z: 0.0}, orientation: {x: 0.0, y: 0.0,z: -0.43,w: 0.90283}}'} --once
`

## Verify that Behavior Planner receives routes from Global Path
On Terminal 2, you should see following message output:

`
[behavior_planner_node_exe-19] [INFO] [planning.behavior_planner_node]: Received route
`

## Verify that Lane Planner and Parking Planner are called by Behavior Planner
On Terminal 2, you should see the following message output:

`
[behavior_planner_node_exe-19] [INFO] [planning.behavior_planner_node]: sent parking trajectory action goal
[behavior_planner_node_exe-19] [INFO] [planning.behavior_planner_node]: Received trajectory from planner
`

## Verify that Behavior Planner outputs a Trajectory for MPC to follow
On Terminal 3, you should see a trajectory message coming out from the behavior planner.





            

          

      

      

    

  

    
      
          
            
  
Running the EKF filter for localization {#ekf-localization-howto}

@tableofcontents

# Ndt EKF smooth localization

This demo aims to show Kalman filter smoothing on top of NDT localization. The pose messages from
NDT get a covariance assigned, then get passed into the Kalman filter node. The smooth output is
then published as an Odometry topic and visualized in rviz2. This demo is tested with the Lexus car
in LG simulator on the parking lot map.

Before running the demo, ensure that ADE is running. If not, it can be started as in the example below:

`console
$ cd ~/adehome/AutowareAuto
$ ade start --update --enter
`

Then, run the demo as follows:

`console
$ ade start
ade$ ros2 launch autoware_demos ekf_ndt_smoothing_lgsvl.launch.py
`





            

          

      

      

    

  

    
      
          
            
  
Starting and testing the global planner {#global-planner-howto}

@tableofcontents

# How to start the stack

Start simulation as described in @ref lgsvl.
Additionally, to configure LGSVL for this demonstration:


	Maps: use this [map link](https://assets.dev.lgsvlsimulator.com/d5b8bb0b7f49875a8a4bbf83c50b3a4fe53779c7/environment_AutonomouStuff)


	Vehicles: Select ROS2 native bridge type and paste the content of AutowareAuto/lgsvl-sensors.json into the Sensors text box




3. Simulations: In General tab, Select Cluster = Local Machine and untick any boxes.
In Map & Vehicles tab, ensure to untick Run simulation in interactive mode.
In Traffic tab, untick all selection.
The Weather tab is irrelevant.

terminal 1
`
# start sim according to instructions above but don't drive away yet to make sure we can localize ourselves
`

terminal 2
`
> ade enter
ade$ cd AutowareAuto && source install/setup.bash
ade$ colcon build --packages-up-to autoware_auto_avp_demo
ade$ stdbuf -o L ros2 launch autoware_auto_avp_demo ms3_sim.launch.py
`

The stdbuf command above is needed because the default in ROS is to only output lines from stdout when the buffer is full.
This command changes that setting to use a “line buffer” which outputs every line, providing more debugging information.

terminal 3
`
> ade enter
ade$ cd AutowareAuto && source install/setup.bash
ade$ ros2 topic echo /planning/global_path
`

Before selecting a goal, you will need to initialize localization.
To do this switch to the rviz window, click the 2D Pose Estimate button at the top, and then click at the approximate location where the vehicle currently is in the map and drag in the direction of the vehicle’s heading.
You can verify that the vehicle has been localized by the vehicle model jumping to the new location and the real-time lider scans matching up with the static lidar map.

Next, to select a parking spot graphically, click the 2D Nav Goal button in rviz, click in the goal location, and drag in the direction of the goal heading.

Optionally, to send a goal position/heading programmatically:

terminal 4
```
> ade enter
ade$
ros2 topic pub –once /planning/goal_pose geometry_msgs/msg/PoseStamped “{
header:



	{stamp:
	{sec: 1600775035,
nanosec: 496432027},





frame_id: map},





	pose:
	
	{position:
	{x: -77.87589263916016,
y: -18.580652236938477,
z: 0.0},



	orientation:
	{x: 0.0,
y: 0.0,
z: 0.14149930538744868,
w: 0.9899383549367453}}}










“

The path with lane IDs should be output in terminal 3.

Note To choose a different parking spot, click 2D Nav Goal in rviz and listen to the message with


ros2 topic echo /goal_pose




and update the values in the message in YAML format above.

# Passing metrics

The output message looks like


```

primitives:
- id: 8252


primitive_type: parking





	id: 9074
primitive_type: drivable_area


	id: 6581
primitive_type: lane




# lots of lanes omitted


	id: 6700
primitive_type: lane


	id: 7957
primitive_type: drivable_area


	id: 9824
primitive_type: parking




```

To check if the route is reasonable, open the OSM map AutowareAuto/src/tools/autoware_auto_avp_demo/data/autonomousstuff_parking_lot.osm in a text editor and search for way id=’9824.
It references a node, the center of the entrance line, 9831 in this case.
Searching for its coordinates, they are:


<node id=’9831’ visible=’true’ version=’1’ lat=’37.38065126054’ lon=’-121.90931385745’>




To graphically inspect this, install the qgis tool with:


sudo apt install qgis




and follow [this tutorial](https://wiki.openstreetmap.org/wiki/QGIS_tutorial) to open the .osm file.
Finally, install a plugin called Lat Lon Tools and enter the coordinates to pinpoint the node with a red crosshair.









            

          

      

      

    

  

    
      
          
            
  
Initializing the NDT localizer {#ndt-initialization}

@tableofcontents

The LGSVL simulation always spawns the car at a particular location of the map that is different
from the origin. The NDT localizer used in the Autoware.Auto stack requires an initial guess of the
vehicle pose that is somewhere close to the truth. From this guess, NDT finds the best pose (i.e.
localizes) in an interactive optimization. Once initialized, NDT uses the information of the previous
time step to initialize and does not need further user input. It should localize as the car moves
around.

# Prerequisites

-# Follow the @ref lgsvl instructions.
-# Start the Autoware.Auto stack including the NDT component and the RViz visualization; e.g. as per the [AVP demo instructions](@ref avpdemo-simulation-launch).

The following error message is expected in the terminal in which the stack was started until the localization is successful:


[localization.p2d_ndt_localizer_node]: Could not find a connection between ‘map’ and ‘base_link’ because they are not part of the same tree.Tf has two or more unconnected trees.




There are two ways to send an initial guess of the vehicle pose to the system:


	Select pose graphically in RViz.


	Publish a pose in the terminal.




Option 1. is more flexible, as one can drive the car around in the simulation to any spot on the available map, and then choose to initialize the localization there.

Option 2. is easier to achieve reproducible results.

Initially RViz is centered on the origin of the map frame but the vehicle is spawned to a different
location in the map, still unknown to RViz. Zoom in/out with the mouse wheel and pan the view with
the middle-mouse button in RViz. Press F1 in the simulator window to see the camera controls. The
following figure shows the vehicle at its spawning point and RViz zoomed out enough to display the
origin of the map frame and the location of the vehicle. The origin of the map is indicated with a
small white grid containing a white outline of the supposed (but incorrect) vehicle pose.

@image html images/avp_before_localization.png “Initial views of simulator and RViz” width=90%

# Initializing with RViz {#ndt-initialization-rviz}

Check that in RViz, the map fixed frame is selected. Make sure the map and TF visualizations are
enabled and you have a good top-down view.

In RViz, click on 2D pose estimation button and then click/drag on the position of the vehicle such that the arrow points in the same direction as the car and release the mouse button. A message with the pose estimate is then sent to NDT.

Here is what rviz should look like when setting the initial pose:
@image html images/avp-rviz-init.png “Initialize localization with rviz” width=70%

A tf visualization (the red-blue-green axes) should appear at that location and the Could not find a connection error messages in the terminal should stop.

Here is what rviz should look like after successful initialization, depending on which visualizations are enabled; the important ones are the colorful tf crosses for odom and base_link whose marker scale has been increased for better visibility within RViz:

@image html images/avp_after_localization.png “Zoom-in on vehicle in RViz after localization initialization” width=70%

@note Upon first localization, there is a jump and the RViz display needs to be re-centered to show the vehicle.

If the initial pose estimate was close, you should be able to drive around in the simulator and see the base_link frame track the car’s position

@warning The localization may not be able to follow if the car is manually driven in a jerky manner, or if the CPU load is too and some lidar packets are dropped. If the localization is stuck, restart the stack and re-initialize.

Note that the pose can be echoed and copied for later use with the second initialization method:

`
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 topic echo /localization/initialpose
`

# Initializing with a predefined pose {#ndt-initialization-predefined}

In order to initialize localization at the spawning point of the simulation as defined in @ref lgsvl, enter the following command in a new terminal:

```
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 topic pub –once /localization/initialpose geometry_msgs/msg/PoseWithCovarianceStamped ”
{header : {



	stamp{
	sec: 0,
nanosec: 0





},
frame_id : “map”




},
pose : {



	pose{
	
	position{
	x: -57.463,
y: -41.644,
z: -2.01,





},
orientation : {


x: 0.0,
y: 0.0,
z: -0.99917,
w: 0.04059,




},





},
covariance : [


0.25, 0.0,  0.0, 0.0, 0.0, 0.0,
0.0,  0.25, 0.0, 0.0, 0.0, 0.0,
0.0,  0.0,  0.0, 0.0, 0.0, 0.0,
0.0,  0.0,  0.0, 0.0, 0.0, 0.0,
0.0,  0.0,  0.0, 0.0, 0.0, 0.0,
0.0,  0.0,  0.0, 0.0, 0.0, 0.068,




],




}}
”
```





            

          

      

      

    

  

    
      
          
            
  
3D perception stack {#perception-stack-howto}

@tableofcontents

# Running the Autoware.Auto 3D perception stack

First, ensure that ADE is running and that everything is up to date. Open a terminal and type: $ ade start –update.

The Autoware.Auto 3D perception stack consists of a set of nodes necessary to compute and publish object bounding boxes. The minimal stack for doing so is:


	[point_cloud_filter_transform_node](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/tree/master/src/perception/filters/point_cloud_filter_transform_nodes): Transforms output of the velodyne_node to a common frame.


	[ray_ground_classifier_node](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/tree/master/src/perception/filters/ray_ground_classifier_nodes): Classifies point cloud points to indicate whether they belong to a ground or non-ground surface.


	[euclidean_cluster_node](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/tree/master/src/perception/segmentation/euclidean_cluster_nodes): Clusters the non-ground points into object detections.




There are also optional nodes, not covered in this tutorial, that can be used to augment the stack:


	[point_cloud_fusion](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/tree/master/src/perception/filters/point_cloud_fusion): Fuses point clouds from multiple sources into a single message. This is used currently to fuse the front and rear lidar data into a single message stream. This tutorial only uses the front lidar data.


	[voxel_grid_nodes](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/tree/master/src/perception/filters/voxel_grid_nodes): This can be used to downsample point cloud data through a voxel grid representation. This tutorial does not perform downsampling.




To aid becoming familiar with the elements of the perception stack, the following subsections describe how to bring up the stack node by node without using the launch file. Follow the directions in sequence.

## Prerequisites

In order to run the perception stack, we need to open a visualizer, publish sensor data, and publish the “robot state,” which is the transform tree describing the sensors positions with respect to the vehicle. The following subsections describe how to do this.

### Running the rviz2 visualizer

rviz2 can be used to visualize perception data as it is published. To start the visualizer, open a new terminal, then:

`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ rviz2 -d /opt/AutowareAuto/share/autoware_auto_examples/rviz2/autoware_perception_stack.rviz
`
The rviz config has displays for all topics in this tutorial. As nodes are launched, they will be displayed in rviz. The checkboxes next to topic names can be checked and unchecked to toggle which perception outputs are visualized.

### Publishing sensor data

In order to bring up the perception stack, point cloud data needs to be published to the /lidar_front/points_raw topic. Several methods for doing this are given below.


	Replaying recorded sensor data. To do this:






	Download the PCAP file [Dual VLP-16 Hi-Res pcap file](https://autoware-auto.s3.us-east-2.amazonaws.com/route_small_loop_rw.pcap).


	Move the downloaded file into your adehome folder.


	Replay the file using udpreplay:







`console
$ ade enter
ade$ udpreplay -r -1 route_small_loop_rw.pcap
`



	Launch the [velodyne_node](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/tree/master/src/drivers/velodyne_nodes) for the front lidar:







Dashing:

$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 run velodyne_nodes velodyne_cloud_node_exe –model vlp16 __ns:=/lidar_front __params:=/opt/AutowareAuto/share/velodyne_nodes/param/vlp16_test.param.yaml
```

Foxy:

`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 run velodyne_nodes velodyne_cloud_node_exe --model vlp16 --ros-args --remap __ns:=/lidar_front --params-file /opt/AutowareAuto/share/velodyne_nodes/param/vlp16_test.param.yaml
`



	Launch the [velodyne_node](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/tree/master/src/drivers/velodyne_nodes) for the rear lidar:







Dashing:

`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 run velodyne_nodes velodyne_cloud_node_exe --model vlp16 __ns:=/lidar_rear __params:=/opt/AutowareAuto/share/velodyne_nodes/param/vlp16_test_rear.param.yaml
`

Foxy:

`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 run velodyne_nodes velodyne_cloud_node_exe --model vlp16 --ros-args --remap __ns:=/lidar_rear --params-file /opt/AutowareAuto/share/velodyne_nodes/param/vlp16_test_rear.param.yaml
`
2. Running a simulator: To do this, see [Running the LGSVL Simulator along side Autoware.Auto](lgsvl.html)
3. Connecting to the sensor: To do this, update the IP address and port arguments in the param file for the [velodyne_node](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/tree/master/src/drivers/velodyne_nodes) and then launch the node:

Dashing:

`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 run velodyne_nodes velodyne_cloud_node_exe --model vlp16 __ns:=/lidar_front __params:=/opt/AutowareAuto/share/velodyne_nodes/param/vlp16_test.param.yaml
`

Foxy:

`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 run velodyne_nodes velodyne_cloud_node_exe --model vlp16 --ros-args --remap __ns:=/lidar_front --params-file /opt/AutowareAuto/share/velodyne_nodes/param/vlp16_test.param.yaml
`

note
At this point, there exists a convenience launch file that can bring up the robot_state_publisher along with the rest of the perception stack using a single command.
You can either use the below launch file to bring up the stack, or continue on with the tutorial:


	When using PCAP data:




`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 launch autoware_demos lidar_bounding_boxes_pcap.launch.py
`
- When using the LGSVL simulator:
`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 launch autoware_demos lidar_bounding_boxes_lgsvl.launch.py
`

### Publishing the robot state

This node publishes the transform tree of the vehicle available. To do this:


	When using PCAP data:




`console
$ ade enter
ade$ ros2 run robot_state_publisher robot_state_publisher /opt/AutowareAuto/share/lexus_rx_450h_description/urdf/lexus_rx_450h_pcap.urdf
`
- When using the LGSVL simulator:
`console
$ ade enter
ade$ ros2 run robot_state_publisher robot_state_publisher /opt/AutowareAuto/share/lexus_rx_450h_description/urdf/lexus_rx_450h.urdf
`

## Bringing up the perception stack

Now that the prerequisites have been brought up, the perception stack can be launched.

### Run the point cloud filter transform node

This node transforms point clouds from the velodyne_node to a common frame. In a new terminal, do:

Dashing:

`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 run point_cloud_filter_transform_nodes point_cloud_filter_transform_node_exe __ns:=/lidar_front __params:=/opt/AutowareAuto/share/point_cloud_filter_transform_nodes/param/vlp16_sim_lexus_filter_transform.param.yaml __node:=filter_transform_vlp16_front  --remap points_in:=/lidar_front/points_raw
`

Foxy:

`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 run point_cloud_filter_transform_nodes point_cloud_filter_transform_node_exe --ros-args --remap __ns:=/lidar_front --params-file /opt/AutowareAuto/share/point_cloud_filter_transform_nodes/param/vlp16_sim_lexus_filter_transform.param.yaml --remap __node:=filter_transform_vlp16_front  --remap points_in:=/lidar_front/points_raw
`

![Autoware.Auto transformed points snapshot](autoware-auto-transformed-points.png)

### Run the ray ground classifier node

This node classifies point cloud points according to whether they are ground or non-ground. In a new terminal, do:

Dashing:

`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 run ray_ground_classifier_nodes ray_ground_classifier_cloud_node_exe __params:=/opt/AutowareAuto/share/ray_ground_classifier_nodes/param/vlp16_lexus.param.yaml --remap points_in:=/lidar_front/points_filtered
`

Foxy:

`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 run ray_ground_classifier_nodes ray_ground_classifier_cloud_node_exe --ros-args --params-file /opt/AutowareAuto/share/ray_ground_classifier_nodes/param/vlp16_lexus.param.yaml --remap points_in:=/lidar_front/points_filtered
`

![Autoware.Auto ray ground filter snapshot](autoware-auto-ray-ground-filter-smaller.png)

### Run the Euclidean cluster node

This node clusters non-ground points into objects and publishes bounding boxes. In a new terminal, do:

Dashing:

`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 run euclidean_cluster_nodes euclidean_cluster_node_exe __params:=/opt/AutowareAuto/share/euclidean_cluster_nodes/param/vlp16_lexus_cluster.param.yaml --remap points_in:=/points_nonground
`

Foxy:

`console
$ ade enter
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 run euclidean_cluster_nodes euclidean_cluster_node_exe --ros-args --params-file /opt/AutowareAuto/share/euclidean_cluster_nodes/param/vlp16_lexus_cluster.param.yaml --remap points_in:=/points_nonground
`

![Autoware.Auto bounding boxes segmentation snapshot](autoware-auto-bounding-boxes-smaller.png)





            

          

      

      

    

  

    
      
          
            
  
Record/Replay Planner {#recordreplay-planner-howto}

[TOC]

# Record/Replay a Trajectory in LGSVL

Autoware.Auto is capable of recording a path of waypoints to disk and then loading and attempting to follow that path.
This demonstration combines several subsystems including @ref ndt-initialization “NDT Localization” and the @ref perception-stack-howto.
To test this functionality, do the following:

## Prerequisites

The following instructions assume you are running the demo inside of ADE.
For instructions on setting up an ADE environment, see @ref installation-ade.
For instructions on setting up Autoware.Auto without ADE, see @ref installation-no-ade.
If running outside of ADE, replace source /opt/AutowareAuto/setup.bash with source /<path_to_your_autoware_folder>/install/setup.bash.

## Instructions


	[Launch the LGSVL simulator](@ref lgsvl) with the Lexus RX 450h and the AutonomouStuff Parking Lot map. Do not start the simulation at this point.


	In a new terminal:




`
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 launch autoware_auto_avp_demo recordreplay_planner_demo.launch.py
`

In rviz, locate the spawn point of the vehicle in the AutonomouStuff parking lot map using the point cloud as a reference.

@image html images/recordreplay_spawn_point.png “LGSVL Spawn Point” width=800px

Use the “2D Pose Estimate” tool in rviz to provide an initial pose estimate for localization.

@image html images/recordreplay_pose_estimate.jpeg “Initial Pose Estimate” width=800px

Using the LGSVL web interface, start the simulation.
Once localization has begun estimating the vehicle’s position, the view in rviz will jump away from the vehicle. Re-center the view on the vehicle.
In a new terminal:

`
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 action send_goal /planning/recordtrajectory recordreplay_planner_actions/action/RecordTrajectory "{record_path: "/tmp/path"}" --feedback
`

In LGSVL, drive the vehicle around to record the path.
When finished recording, go to the terminal in which you ran the ros2 action send_goal command and hit CTRL+C to stop recording.
In LGSVL, hit F12 to re-center the vehicle at the default spawn point.
You will then need to re-initialize localization at the new location with the 2D Pose Estimate tool in rviz.
To replay the recorded path:

`
ade$ source /opt/AutowareAuto/setup.bash
ade$ ros2 action send_goal /planning/replaytrajectory recordreplay_planner_actions/action/ReplayTrajectory "{replay_path: "/tmp/path"}" --feedback
`

When the vehicle reaches to the goal of the replayed trajectory, the planner stops automatically and outputs status::SUCCEED to the terminal in which you ran the ros2 action send_goal command.
You can modify end conditions by tuning parameters in [recordreplay_planner.param.yaml](src/tools/autoware_auto_avp_demo/param/recordreplay_planner.param.yaml). The planner terminates planning when both of the following conditions are satisfied:
* goal_distance_threshold_m: threshold for the distance between nav_base frame and the last point in the replayed trajectory
* goal_angle_threshold_rad: threshold for the heading angle between nav_base frame and the last point in the replayed trajectory





            

          

      

      

    

  

    
      
          
            
  
Localization Demo using rosbag {#rosbag-localization-howto}

@tableofcontents

# Running the Localization Demo


	Setup the Autoware environment following instructions in the [installation guide](@ref installation).


	In the console, download and extract a rosbag.


`console
> cd ~
> curl https://autoware-auto.s3.us-east-2.amazonaws.com/rosbag2/rosbag2-astuff-1-lidar-only.tar.gz | tar xz
`






	Launch the demo.


`console
> ros2 launch autoware_demos localization_rosbag.launch.py
`

There are a few options to the launch script.
You can see more details by running:

`console
> ros2 launch -s autoware_demos localization_rosbag.launch.py
`












            

          

      

      

    

  

    
      
          
            
  
Trajectory Following {#trajectory-following-howto}

@tableofcontents

# Simple trajectory following in LGSVL

The [test_trajectory_following](https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/tree/master/src/tools/test_trajectory_following) package contains launch files, param and scripts for easier integration testing of different modules needed for trajectory following functionality.

For example this package can be used for simulator testing with a dummy/spoofed trajectory.
To do so, follow the instructions below:


	Start [LGSVL](lgsvl.html)


	Launch the trajectory test node:




`console
ros2 launch test_trajectory_following simple_trajectory_following.launch.py sim_type:=lgsvl
`

The launch file start spoofing a trajectory and bring up an rviz visualization.
By default green is the trajectory from planner/record replay, whatever is being sent to the controller, and blue is the internal representation of the mpc controller, which may be interpolated, smoothed, and predicted.

![Autoware.Auto trajectory following](trajectory-following-small.jpg)





            

          

      

      

    

  _static/minus.png





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/file.png





